
www.manaraa.com

I

Leader Election Algorithms for Three Dimensions

Torus Networks with the Presence of One or Two

Links Failure

Presented by:

Abdelkhaleq Al Hammouri

Supervised by

Prof. Ala'a Al Hamami

Dissertation Submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

in Computer Science

College of Computer Sciences and Informatics

Amman Arab University

September 2012

www.manaraa.com

II

www.manaraa.com

III

www.manaraa.com

IV

Dedication

To my parents, my wife who kept with me day and night to complete

this work and to everybody who contributed to enrich the science of

human, even in one character

www.manaraa.com

V

Acknowledgment

 After praises and thanks to ALLAH, I would like to thank my dean

and supervisor prof. Dr. Ala'a Al-Hamami, who encouraged and

helped me to complete this work.

 Finally, I would like to thank all lecturers, administration, and staff

of Amman Arab University for their help and support.

www.manaraa.com

VI

Table of Contents

Dedication .. IV

Acknowledgment ... V

Table of Contents ... VI

List of Tables .. IX

List of Figures ... X

Acronyms and Abbreviations .. XI

Abstract ... XII

Arabic summary ... XIV

Chapter one Introduction ... 1

1.1 Overview .. 1

1.2 About leader election algorithms. 1

1.3 Importance of parallel computing. .. 4

1.4 How to choose the network. ... 7

1.6 Statement of the Problem. .. 10

1.7 Goals of this Dissertation.. 10

1.8 Problem Definition. ... 11

1.9 Contributions .. 11

1.10 Research Limitations .. 12

1.11 Definitions of Terms: .. 12

1.12 Organization of the dissertation. 13

Chapter-2 Approaches to Interconnection Networks and
Topologies .. 14

2.1 Overview. ... 14

2.2.1.1 Direct Networks Types. .. 16

2. Star Connected Networks. ... 16

3. Ring Networking ... 17

4. Bus (line) Topology .. 18

5. Hypercube Networks .. 19

6. Butterfly Networks .. 19

7. Tree Topology .. 20

8. Mesh Networks .. 21

www.manaraa.com

VII

9. Torus (Wraparound) Networks. .. 22

10. Shuffle-Exchange Network. .. 22

2.2.1.2 Direct Networks Evaluation. ... 23

2.2.2 Indirect Networks. ... 24

2.2.3. Shared-Medium Networks. ... 26

2.2.4. Hybrid Networks. .. 27

Chapter 3 Literature Review .. 32

3.1 Introduction .. 32

3.2 Related Works .. 32

Chapter 4 leader election algorithms ... 49

4.1 Introduction .. 49

4.2 Model Description and Assumptions. 49

4.3 Leader Election Algorithms in 3D torus Networks. 52

4.3.1 Leader Election in 3D Torus Networks with one Link Failure
 ... 52

4.3.2 Leader election In 3D torus networks with Two links failure
 ... 57

Chapter 5 algorithms performance evaluation 67

5.1 Introduction .. 67

5.2 Leader Election in 3D Torus Networks with One Link Failure
Analyses. ... 67

5.2.1 Number of Messages: ... 67

5.3 Leader Election in 3D Torus Networks with Two Links Failure
Analyses. ... 73

5.3.1 Number of Messages: ... 74

5.3.2 Time Steps. .. 77

5.4. Simulation ... 80

5.4.1 Programming Language Used. .. 80

5.4.2 Algorithm Simulation ... 80

Chapter 6 Conclusion and Future Work 94

6.1 Introduction. ... 94

6.2 Results. .. 94

6.2.1 Results of the First Proposed Algorithm. 94

6.2.2 Results of the Second Proposed Algorithm. 95

www.manaraa.com

VIII

6.3 Future Works. ... 96

References .. 97

Appendices ... 103

www.manaraa.com

IX

List of Tables

Table Title Page

1 Experiments of Computer Simulation 51

2 Link Failure Solution By Detours 73

www.manaraa.com

X

List of Figures
Figure Title Page

1 Direct Network router based Examples 6

2 Complete Connection Network 21

2 Star Connection Network 22

4 Ring Network 23

5 Bus Topology 24

6 0D to 4D Hypercube topology 25

7 Butterfly topology 26

8 8 Tree Network 27

9 2D Mesh (4 * 4) 28

10 2D Torus (6 * 6) 28

11 shuffle-exchange network 29

12 Bus- Based Network 32

13 Cross-Bar Switch Network 33

14 Omega interconnection networks 34

15 Shared-Medium Networks 35

16 Deterministic Routing 39

17 directions in 3d torus 65

18 (3 X 3X 3) Torus Networks 66

19 link failure in phase 2 69

20 Phase 3 election steps and link failure solution 71

21 Phase 4 election steps and link failure solution 72

22 Phase 5 Broadcast leader message through all axes 73

23 two link failure phase two 76

24 Phase three two link failure 77

25 Phase four election 78

26 26 phase four election two link failure +y,+x 80

27 with two link failure +x, +x 81

28 State diagram for nodes 84

29 Flow chart 85

www.manaraa.com

XI

Acronyms and Abbreviations

abbreviation acronym

3DT Three Dimension Torus

ACK Acknowledgment

CSMA/CD Carrier Sense Multiple Access With

Collision Detection

CSMA/CA Carrier Sense Multiple Access With

Collision Avoidance

DS Distributed System

DSPT Distributed Space Partitioning Tree

ID Identification Number Of The Node

LAN Local Area Network

LEA Leader Election Algorithm

MAU Media Access Unit

MANET Mobile ad hoc networks

O(n) Mechanical function used to evaluate the

algorithm in time unit

RN Radio Networks

WAN Wide Area Net Work

Wid Weighted Identification Number

www.manaraa.com

XII

Abstract
 Leader election is a very important algorithm in wired and

wireless networks. It is used to solve the single point failure in

distributed systems when one process which called leader is

responsible to coordinate and manage the whole network. The

leader election algorithms solve the instability problem in the

network, which is caused by leader failure. The algorithm aims to

find a new leader identified by some characteristics from all other

nodes. When the algorithm is terminated, the network is returned to

a stable state with one node detected as a leader, All the other

nodes will be in formed to be aware of this leader. The algorithm

starts by one or more processes who detect that the leader process

is failed for any reason like battery age, CPU speed, memory…etc .

It terminates when all nodes know who the new leader is.

 The research work reported here is concerned with building and

designing two leader election algorithms, to contribute in solving leader

crash problem in three dimensional torus networks. The algorithms solve

the problem in presence of one/two link failure.

 Many issues are considered when designing these

algorithms, For instance, Collision avoidance mechanisms which

may decrease the message and time complexity, and messages

synchronization which may help in concurrent execution overall the

network.

 Algorithm performance is evaluated by calculating the

number of messages and time steps overall the algorithms. In a

network of N nodes connected by a three dimensional torus

network, the performance is evaluated in simple case, when leader

failure is detected by one node and In the worst case, when leader

www.manaraa.com

XIII

failure is detected by (N-1) nodes. For all cases the number of

messages is O(N) in 3 NO steps. This result is valid even in the

presence of one or two links failure. Simulation model is used to

proof the result of mathematical analysis.

www.manaraa.com

XIV

Arabic summary

3 NO

www.manaraa.com

1

Chapter one
Introduction

1.1 Overview

 In centralized control networks, one of the most fundamental

problems is the single point failure, which is also called leader failure

or leader crash. This problem converts the network to unstable state

in which all processes cant reach the leader process . So all

processes are in the same state, that is, they all are candidates and

can become new leader. The common solution for this problem is

Leader Election Algorithms (LEAs) which is a distributed algorithm,

LEA return the network to normal state where one process as leader

and all nodes aware of this leader (Antoniou and Srimani, 1996 ;

Castillo et al. ,2007).

 In distributed computing, leader election is the process of

designating a single process as the organizer of some task

distributed among several processes. Before task begins, all

network nodes are unaware which node will serve as the "leader" or

coordinator of the task. After a leader election algorithm has been

run, however, each node throughout the network recognizes a

particular, unique node as the task leader, The network nodes

communicate among themselves in order to decide which of them

will get into the "leader" state. For that, they need some method in

order to break the symmetry among them. For example, if each

node has unique identities, then the nodes can compare their

identities, and decide that the node with the highest identity is the

leader (Kariwala, 2011).

1.2 About leader election algorithms.

 LEA is a program distributed over all processes. It starts when

the leader failure is detected by one process at a simple case or by

http://en.wikipedia.org/wiki/Distributed_computing
http://en.wikipedia.org/wiki/Process_(computing)

www.manaraa.com

2

 all processes at the worst case. It terminates when all processes

are aware of the new elected leader (Singh, 1996; Tanenbaum,

2002).

 LEAs are widely used in centralized systems to solve a single

point failure problem. For example, in client-server, the LEAs are

used when the server fails and the system needs to transfer the

leadership to another station. The LEAs are also used in a token

ring. When the node that has the token fails, the system should

select a new node to have the token (Abu-Amara and Lokre, 1996).

Leader election is an important primitive for distributed computing,

useful as a subroutine for any application that requires the selection

of a unique processor among multiple candidate processors.

Applications that need a leader range from the primary-backup

approach to replication based fault-tolerance to group

communication systems, and from videoconferencing to multi-

player games (Ingram et al., 2009).

 In this research, the LEAs from a parallel perspective will be

studied. In parallel computing, many processors cooperate together

to solve the same software problem. A bottleneck in parallel

computing systems is the communication between processors. The

merging of computers and communications has had a profound

influence on the way computer systems are organized. The old

model of a single computer serving all of the organization’s

computational needs has been replaced by one in which a large

number of separate but interconnected computers do the job. These

systems are called Interconnection networks (Tanenbaum ,2003).

 Interconnection networks can be classified into four major

categories: shared-medium networks, direct-networks (router-

based), indirect networks (switch-based) and hybrid networks.

www.manaraa.com

3

 In shared-medium networks, processors are connected by a

common transmission medium such as a bus. All processors share

the medium which does not generate a message.

To send a message to a destination, a source broadcasts the

message on the medium and the destination picks up the message.

Because processors may send messages to the medium

simultaneously, the resolution of network access connects is

needed. The nature of the shared medium also limits the bandwidth

of the network and the number of end systems in the network.

Examples of the shared medium networks include the Ethernet. The

protocol for the medium access control used in the Ethernet is

known as CSMA/CD (Carrier Sense Multiple Access with Collision

Detection).

In point-to-point networks, end systems are connected by point-to-

point communication links. The networks can be further classified

into two categories: direct networks and indirect networks.

 In direct networks, point-to-point links directly connect each end

system to some other end systems. In indirect networks, end

systems are connected via one or more switches and switches are

connected via point-to-point links.

 Some networks may have more complicated structures such

as hierarchical structures or hyper graph topologies. Such networks

are classified as hybrid networks. On the other hand direct networks

consist of a set of nodes and a set of point-to-point links. Each node

is directly connected to a small subset of nodes by links. Each node

performs both routing and computing. A direct network is usually

modeled as a graph, with vertices and edges. Figure 1 shows direct

networks router based examples.

www.manaraa.com

4

Therefore, the performance of interconnection networks is a critical

issue in parallel computing. This has been a major driving force for

the research of inter-connection networks. The study of

interconnection networks in parallel computing system includes the

performance and cost issues)Qianping ,2011).

1.3 Importance of parallel computing.

Parallel computers are divided into two main types: multiprocessors,

where all processors use the same memory, and multi-computers,

where each computer has local memory and processor.

In distributed system each node must operate accurately to

cooperate with other node, there are some mechanism needed such

as file server, time server and central lock coordinator in

www.manaraa.com

5

the distributed system in generally, these servers are called leaders.

Algorithms which select a leader are called the leader election

algorithms (Mirakhorli et al. ,2007).

There is considerable confusion in the literature between a

computer network and a distributed system. The key distinction is

that in a distributed system, a collection of independent computers

appears to its users as a single coherent system. Usually, it has a

single model or paradigm that it presents to the users. Often a layer

of software on top of the operating system, called middleware, is

responsible for implementing this model. A well-known example of

a distributed system is the World Wide Web, in which everything

looks like a document (Web page).In a computer network; this

coherence, model, and software are absent(Tanenbaum ,2003).

 The machines look and act in a coherent way. If the machines

have different hardware and different operating systems, that is fully

visible to the users. If a user wants to run a program on a remote

machine, he/she has to log onto that machine and run it there. In

effect, a distributed system is a software system built on top of a

network. The software gives it a high degree of cohesiveness and

transparency. Thus, the distinction between a network and a

distributed system lies with the software (especially the operating

system), rather than with the hardware. Nevertheless, there is

considerable overlap between the two subjects. For example, both

distributed systems and computer networks need to move files

around. The difference lies in who invokes the movement, the

system or the user (Tanenbaum ,2003).

 In multi-computers, there are many network topologies such as

torus, hypercube, meshes, ring, bus, star,…etc.

www.manaraa.com

6

These topologies may be either hardware processors or software

processes embedded over the other parallel hardware topology.

Many parallel computers using direction interconnection network

have been designed and commercialized in last decade. Mesh,

torus and hypercube have been the most popular topologies

(Camara et al. ,2009).

 The efficiency of large-scale multi-computers is critically

dependent on the performance of its interconnection network, which

is greatly influenced by the topology, switching method, routing

algorithm as well as the traffic pattern exhibited by parallel

applications. Low-dimensional versions of k-ary n-cubes, also

known as tori, have been popular in the latest generation of multi-

computers due to their desirable properties, such as: ease of

implementing Processor Scheduling and Allocation for 3D Torus

Multicomputer Systems(Choo and youn, 2000). Although the

dynamic communication performance of a program on a

multicomputer depends on the actual times taken for data transfer,

a smaller average distance and diameter of an interconnection

network yields a smaller communication latency of that network(Al

Faisal and rahman, 2009).

 An important challenge added to this work is the type of routing

that will be used to fast the interconnection in the network. Routing

is the process of selecting paths in a network along which to send

network traffic. Routing performed for many kinds of networks,

including the telephone network (Circuit switching), electronic data

networks (such as the Internet), and transportation networks .

 The Internet is comprised of a mesh of routers interconnected

by links. Communication among nodes on the Internet

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Al%20Faisal,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Al%20Faisal,%20F..QT.&newsearch=partialPref
http://en.wikipedia.org/wiki/PSTN
http://en.wikipedia.org/wiki/Circuit_switching
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Transport_network

www.manaraa.com

7

 (routers and end-hosts) takes place using the Internet Protocol,

commonly known as IP. IP datagrams (packets) travel over links

from one router to the next on their way towards their final

destination. Each router performs a forwarding decision on incoming

packets to determine the packet’s next-hop router (Gupta, 2000).

 There are a number of properties that we desire for all lookup

and classification algorithms of routing:

• High speed.

• Low storage requirements.

• Flexibility in implementation.

• Ability to handle large real-life routing tables and classifiers.

• Low preprocessing time.

• Low update time.

• Scalability in the number of header fields (for classification

algorithms only).

• Flexibility in specification (for classification algorithms only). In

multiprocessor system, the topology of interconnection network is

critical (Gupta, 2000).

1.4 How to choose the network.

 To achieve this work store and forward routing will be used , so

that the parallel processing system can efficiently perform various

application algorithms in engineering and scientific. An

interconnection network is usually represented by an undirected

graph, where the node set represents the processors, and the edge

set represents the communication link.

 It can be said the diameter of a network is the maximum inter-node

distance, Le., the maximum number of links that must be traversed

to send a message to any node along the shortest path.

www.manaraa.com

8

 As a definition, the distance between adjacent nodes is unity.

Diameter is the maximum distance among all distinct pairs of nodes

along the shortest path. The diameter is commonly used to describe

and compare the static network performance of the network's

topology. Networks with small diameters are preferable. The smaller

the diameter of a network,the shorter the time to send a message

from one node to the node that is farthest away from it(Al Faisal and

Rahman, 2009)

 Inter-node distance, message traffic density, and fault tolerance

are dependent on the diameter and the node degree. The product

(diameter x node degree) is a good criterion for measuring the

relationship between cost and performance of a multiprocessor

system. An interconnection network with a large diameter has low

message passing bandwidth, and a network with a high node

degree is very expensive. In addition, A network should be easily

scalable; there should be no changes in the basic node

configuration as we increase the number of nodes. The cost of

different networks is plotted and it is shown that the cost of STTN(

Al Faisal and rahman, 2009) .

 In a topology of interconnection network, degree of a node,

diameter and cost are three important measures that aid in

evaluating different network structures. The degree of a node is

denoted as the number of input/output links per node. The diameter

of the network is the maximum value of all shortest paths between

any two nodes. In designing a topology, there is always a trade-off

between degree, which relates to the hardware cost, and diameter,

which relates to the message transmission time. (Al Faisal and

Rahman, 2009) .

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Al%20Faisal,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Al%20Faisal,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Al%20Faisal,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Al%20Faisal,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Al%20Faisal,%20F..QT.&newsearch=partialPref

www.manaraa.com

9

1.5 torus network.

In order to reduce these three metrics and optimize other

characteristics, many topologies are proposed. Among those, mesh

and torus are the most popular topologies. However, they have an

important drawback that they are not edge-symmetric such that the

diameter is far from the optimum value. The twisted torus topologies

proposed in recover edge-symmetry and, consequently, improve

the performance up to 74%. The Gaussian networks proposed in

model many toroidal networks including the twisted torus (Al Faisal

and Rahman, 2009) . Symmetry of torus networks topology lead

to more balance utilization of communication links, under random

traffic , than in mesh topology (david ,1995). Torus network has

better dynamic communication performance than a mesh.

 The efficiency of large-scale multicomputer is critically

dependent on the performance of its interconnection network, which

is greatly influenced by the topology, switching method, routing

algorithm as well as the traffic pattern exhibited by parallel

applications. Low-dimensional versions of k-ary n-cubes, also

known as torus, have been popular in the latest generation of

multicomputer due to their desirable properties, such as ease of

implementation, recursive structures, and ability to exploit

communication locality to reduce message latency (Min, et al.

2003).

This work proposes two algorithms to solve leader election in the 3D

torus networks. The 3D torus has many preferable properties such

as scalability, routing, similarity and regularity. The torus network T

(n, p) with n columns and p rows is certainly one of the most popular

regular networks. Indeed, this is due to the fact that we have to place

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Al%20Faisal,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Al%20Faisal,%20F..QT.&newsearch=partialPref

www.manaraa.com

11

a circuit in a torus and minimize the distance of any point in the

torus(Barth, and Berthom´e ,2004). These properties make the 3D

torus more flexible and more preferable topology.

 There is not LEAs to solve the leader failure problem with the

existence of link failure for the 3D torus networks. This work will

present a new solution for leader election problem in the 3D torus

with the presence of links failure. So, the proposed solution will take

in consideration, the existence of links failure along with leader

failure problem.

1.6 Statement of the Problem.

 Leader election algorithms currently don’t solve the problem of

leader failure for the three dimensional torus networks with presence

of links failure. The purpose of this study is to design two new

algorithms to solve this problem in the three dimensional torus with

the presence of links failure. The first algorithm will solve the

problem of link failure with presence of one link failure; the second

algorithm will solve the same problem with presence of two link

failure. The solutions will solve this problem with less time steps

and less number of messages.

1.7 Goals of this Dissertation.

In this dissertation two new algorithms will be proposed, to solve the

leader problem. The problem of leader failure in the three dimension

torus network will be solved by new algorithms that have the

following objectives:

Solve the problem with the presence of link failure.

Propose two new efficient algorithms with high speed .

Less number of message and time steps .

The length of message will be shorter.

www.manaraa.com

11

The dissertation will use asynchronous communication in sending

messages during communication.

1.8 Problem Definition.

 Parallel and distributed systems are widely used to increase the

speed of computations. In these systems, many computers

cooperate with each other to solve the computation problem. The

control of these systems may be centralized by one node called

leader. On the other hand, the control may be distributed among

nodes. In centralized control, fault tolerance of leader crash is a

very important issue in these systems. This problem can be solved

by electing a new node to substitute the leader failure. The election

process is the same program distributed over all nodes. It starts

when one or more nodes discover that the leader has failed. It

terminates when the remaining processors know who the new

Leader is. This dissertation will present new algorithms to elect a

new leader in three dimensional torus networks with the following

properties:

Link(s) failure will be tolerated.

Less contention and light load over the network.

The number of time steps and the number of messages overall the

algorithm will be minimized.

Asynchronous and synchronous communications to transfer

messages will be used.

Mathematical analyses will be provided for each algorithm and

simulation models for the two algorithms will be made.

1.9 Contributions

 The contributions of this research are to present two new

algorithms.

www.manaraa.com

12

The first one solves the leader failure problem in three dimensional

torus networks despite the existence of one link failure. The second

algorithm solves the problem despite the presence of more than one

link failures.

These two algorithms will solve the problem of Leader selection in

torus network.

1.10 Research Limitations

The proposed algorithms will not be applied on real systems in this

dissertation. To validate the results, the study will present a

mathematical analysis for the two proposed algorithms and

simulation.

1.11 Definitions of Terms:

Distributed system: It is a collection of autonomous processes that

communicate with each other, either synchronously or

asynchronously.

Leader failure: the node loses the leader proprieties but is still able

to receive and pass messages.

Leader election: A process of choosing a new leader to substitute

the failure one in a centralized control networks.

Link failure: A broken link i.e. no messages can pass through this

link.

Candidate: A state of a node when it is aware of the failure and

participates in the election process.

Normal: A state of a node when it knows the leader node and the

network is stable.

Node-ID: Each node has a unique ID that is used to participate in

the election process. This ID reflects the priority of the node over

other nodes in relation to the new leader.

www.manaraa.com

13

1.12 Organization of the dissertation.

Chapter One: overview about leader election algorithm problem, problem

statement, goals of the dissertation, contributions and dissertation

organization.

Chapter Two: parallel and distributed information related to dissertation,

distributed systems, multicomputer, multiprocessors, interconnection

network, design issues, Performance and complexity and finally the

description and properties of the torus model.

Chapter Three: literature review for the previous works.

Chapter Four: present the two proposed algorithms.

 Chapter Five: analyses of the two proposed algorithms. Mathematical

proves and simulation that verify the algorithms validity.

Chapter Six: conclusions and future works.

www.manaraa.com

14

Chapter-2
Approaches to Interconnection Networks and

Topologies
2.1 Overview.

 Leader election algorithm (LEA) is a fundamental problem in

distributed computing as will as in parallel computers. The main

function of this algorithm is to solve, the popular problem, single

point failure. It has been studied in various computation models. In

the leader election problem there are N processes or nodes in the

network. Each node has a unique Identity (ID) which represents the

priority or the weight to be the next leader. Initially all nodes are

passive and unaware of the identity of any other nodes. An arbitrary

subset of nodes, called the candidates, wake up spontaneously and

starts the election protocol. On the termination of the election

protocol, exactly one node is announced as the new leader where

all other nodes are aware of this leader (Singh, 1992). Leader

election problem was also defined as follow: at any point in time

there exists at most one leader for the network, and when there is

no leader at any time then within at most K time units a new leader

must be elected (Fertzer et al, 2000). Researchers used different

methods to validate their algorithms. One method is to use

mathematical models to compute the number of messages and the

number of time steps and another way is to use simulation program

to validate the results. In this dissertation we considered the

problem of electing a leader in 3D torus network. We use both

mathematical analyses and simulation program to validate our

results.

www.manaraa.com

15

Interconnection Networks

 Interconnection networks offer an attractive solution to this

communication crisis and are becoming pervasive in digital

systems. A well-designed interconnection network makes efficient

use of scarce communication resources — providing high

bandwidth, low-latency communication between clients with a

minimum of cost and energy (Culler et al,1999).

 The communication process between distributed and parallel

computers, types : multicomputer and multiprocessors, connects

the processors with the shared memory or with each other. This

interconnection uses many types of networks topology which can be

classified into two types: dynamic and static networks. Static

network uses point to point communication lines in its processors

interactions. Dynamic networks are constructed by using switching

elements and communication lines (Kumar, 2005). Interconnection

networks in parallel and distributed networks have four types:

Direct networks.

Indirect networks.

Shared-Medium Networks.

Hybrid networks

Direct Networks:

A network topology describes the arrangement of systems on a

computer network. It defines how the computers, or nodes, within

the network are arranged and connected to each other.

 Direct networks use channels to connect network processors.

These Processors communicate with each other and exchange the

data using message passing through the channels. Message

passing is achieved by a set responsible to direct the messages

from source to destination, called router (Culler et al, 1999).

http://www.techterms.com/definition/network

www.manaraa.com

16

2.2.1.1 Direct Networks Types.

 1. Fully connected or all-to-all (Complete) Network

This is the most powerful interconnection network (topology): each

node is directly connected to all other nodes. Figure-2 shows this

type of connection.

Each node has N-1 connections (N-1 nearest neighbors) giving a

total of N(N-1) / 2 connections for the network. Even though this is

the best network to have the high number of connections per node

means this network can only be implemented for small values of N.

Therefore some form of limited interconnection network must be

used.

2. Star Connected Networks.

In local area networks with a star topology, each network host is

connected to a central hub with a point-to-point connection. The

network does not necessarily have to resemble a star to be

classified as a star network, but all of the nodes on the network must

be connected to one central device. All traffic that traverses the

network passes through the central hub. The hub acts as a signal

repeater.

Figure 2: Complete Connection Network

http://www.cs.cf.ac.uk/Parallel/Year2/section5.html#ATOA link
http://en.wikipedia.org/wiki/Repeater
http://en.wikipedia.org/wiki/Repeater

www.manaraa.com

17

The star topology is considered the easiest topology to design and

implement. An advantage of the star topology is the simplicity of

adding additional nodes. The primary disadvantage of the star

topology is that the hub represents a single point of failure .

3. Ring Networking

A ring network is Local Area Network (LAN) in which the nodes

(workstations or other devices) are connected in a closed loop

configuration. Adjacent pairs of nodes are directly connected. Other

pairs of nodes are indirectly connected, the data passing through

one or more intermediate nodes. Each node is shown as a sphere,

and connections are shown as straight lines. The connections can

consist of wired or wireless links. A break in the cable of a ring

network may result in degraded data speed between pairs of

workstations for which the data

path is increased as a result of the break. If two breaks occur and

they are not both in the same section of cable, some workstations

will be cut off from some of the others. When system reliability is a

critical concern, a bus network or star network may prove superior

to a ring network. If redundancy is required, the mesh network

topology may be preferable. In ring topology each processor

connects to two processors to right and left. If the first and last

Figure 3 : Star Connection Network

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212495,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212665,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci870772,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci870743,00.html

www.manaraa.com

18

processors connect to one processor the topology becomes linear

array or bus Figure-4 shows the ring Network graph (Culler et al,

1999; Kumar et al,2003).

4. Bus (line) Topology

Nodes are connected to a main (bus) cable. If data is being sent

between nodes then other nodes cannot transmit. If too many

nodes are connected then the transfer of data slows dramatically as

the nodes have to wait longer for the bus to be clear. Bus topology

has many advantages such as: the simplest and cheapest to install

and extend and well suited for temporary networks with not many

nodes and flexible topology as nodes can be attached or detached

without disturbing the rest of the network. Also failure of one node

does not affect the rest of the simpler than a ring topology to

troubleshoot if there is a cable failure because sections can be

isolated and tested independently. On the other hand bus topology

has disadvantages such as : If the bus cable fails then the whole

network will fail and performance of the network slows down rapidly

with more nodes or heavy network traffic, also the bus cable has a

limited length and must be terminated properly at both ends to

prevent reflected signals and slower than a ring network as data

cannot be transmitted while the bus is in use by other nodes. Figure-

5 shows the bus topology.

www.manaraa.com

19

5. Hypercube Networks

 This topology has N processors which equal 2d (d is the

hypercube dimension). Each processor connects to d neighbors;

hypercube is symmetry graph which means that all nodes are the

same position properties. It has the shortest diameter and many

other advantages but the complexity in number of links as the size

increase is the main disadvantage of this topology. Figure 6 shows

different dimensions of hypercube topology.

6. Butterfly Networks

A scheme that connects the units of a multiprocessing system and

needs n stages to connect 2n processors; at each stage a switch is

thrown, depending on a particular bit in the addresses of the

processors being connected. Figure 7 shows the Butterfly

Figure 5 : Bus Topology

Figure 6: 1D to 4D Hypercube topology

www.manaraa.com

21

topology.

7. Tree Topology

Tree Topology is a

combination of the bus and the Star Topology. In tree network there

is only one path between any two processors The tree like structure

allows you to have many servers on the network and you can branch

out the network in many ways.

A Tree Structure suits best when the network is widely spread and

vastly divided into many branches. Like any other topologies, The

tree Topology has its advantages and disadvantages. A Tree

Network (Figure 8) may not suit small networks and it may be a

waste of cable to use it for small networks. Tree Topology has some

limitations and the configuration should suit those limitations.

Figure 7: Butterfly topology

www.manaraa.com

21

8. Mesh Networks

In mesh topology nodes are arranged into q-dimensional lattice.

Communication is allowed only between neighboring nodes; hence

interior nodes communicate with 2q other processors. The diameter

of a q-dimensional mesh with k * k nodes is q(k-1). The bisection

width of q-dimensional mesh with k * k nodes is k *q-1. The max

edges per node is 2q and The max edge length is constant for two

& three dimensional mesh. Figure 9 shows 2D Mesh.

Figure 8: Tree Network

Figure 9: 2D Mesh (4 * 4)

www.manaraa.com

22

9. Torus (Wraparound) Networks.

Torus network doesn’t differ from meshes except in the connection

between the first and the last nodes in each dimension. This

connection makes all nodes connect to the same number of

neighbors Figure 10 shows two dimensional torus (Culler et al,

1999;Kumar et al,2003; William and Winnipeg,2001).

10. Shuffle-Exchange Network.

In the static shuffle-exchange, the curved arcs take the same role

as the shuffles between the switch boxes in the Omega, and the

straight arcs take the same role as the switch boxes. This gives us,

once again, an O(log n) latency and an O(n) aggregate bandwidth;

the bisection bandwidth is always 4 (so it's O(1)) and the nodes

always have 3 links, so the cost is O(n) as shown in Figure-11.

Figure 11: 2D Torus (6 * 6)

Figure 11: shuffle-exchange network

www.manaraa.com

23

2.2.1.2 Direct Networks Evaluation.

 The following properties determine the utilization and performance

of the direct networks:

1. Diameters: the diameter of a network is the maximum distance

between any two processing nodes in the network. The distance

between two processing nodes is defined as the shortest path

between them (Kumar et al;2003). The shortest diameter is

desirable because the distance determines the communication time.

The diameter in the complete networks is one link. In star network

the diameter is two and in ring it is P/2  links when P is the number

of processing units. The diameter in complete binary tree is

2(Log((P+1)/2)), in mesh without wraparound it is (P1/2-1). The

diameter in wraparound meshes (torus) network is 2  P1/2/2  . For

the hypercube the diameter is Log P (Culler et al, 1999; Kumar

et al,2003).

2. Connectivity. The connectivity of a network is a measure of the

multiplicity of paths between any two nodes. One measure of

connectivity is the minimum number of arcs that have to be removed

to break down the network into two parts. This is called the arc

connectivity of the network. It is two for rings and 2-d meshes without

wraparound and d for d-dimensional hypercube. The arc

connectivity is one in star network, tree and linear arrays (Culler et

al, 1999;Kumar et al,2003).

3. Cost. The cost can be determined by a number of communication

links in the network. For instance linear and tree networks required

P-1 links, torus needs Width*Length links. Hypercube needs

(PLog(p))/2 (Culler et al, 1999;Kumar et al,2003).

www.manaraa.com

24

4. Symmetry. The network is symmetry when it is the same when

looking at it from different sides (Schneider, 1993; Ostrovsky et

al,1994)).

2.2.2 Indirect Networks.

 There are many types of indirect networks that use shared

memory:

 Bus-Based Networks.

 A bus-based interconnection network here used to implement a

shared-memory parallel computer. Each processor (P) is connected

to the bus, which in turn is connected to the global memory. A cache

associated with each processor stores recently accessed memory

values, in an effort to reduce bus traffic as shown in Figure 12.

 Buses are commonly used in shared-memory parallel computers

to communicate read and write requests to a shared global

memory. In principle, the use of a global memory in a shared-

memory computer simplifies parallel programming by making

locality a nonissue., most shared-memory parallel computers

introduce caches in an attempt to reduce bus traffic; hence, locality

continues to be important.

Cross-Bar Switch Network

Figure 12 :Bus- Based Network

www.manaraa.com

25

 In a network, a cross-bar switch is a device that is capable of

channeling data between any two devices that are attached to it up

to its maximum number of ports. The paths set up between devices

can be fixed for some duration or changed when desired and each

device-to-device path (going through the switch) is usually fixed for

some period.

Cross-bar topology can be contrasted with bus topology, an

arrangement in which there is only one path that all devices share.

Traditionally, computers have been connected to storage devices

with a large bus. A major advantage of cross-bar switching is that,

as the traffic between any two devices increases, it does not affect

traffic between other devices. In addition to offering more flexibility,

a cross-bar switch environment offers greater scalability than a bus

environment.

In an IBM mainframe environment, the ESCON director is an

example of a cross-bar switch(Rouse ,2007) as in Figure 13.

Figure 13: Cross-Bar Switch Network

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212807,00.html
http://searchtelecom.techtarget.com/sDefinition/0,,sid103_gci213079,00.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213156,00.html
http://searchstorage.techtarget.com/sDefinition/0,,sid5_gci211718,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci212940,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci212516,00.html
http://searchdatacenter.techtarget.com/sDefinition/0,,sid80_gci214496,00.html

www.manaraa.com

26

3. Multistage Interconnection Networks.

 Bus networks are scalable in terms of cost and not scalable

in terms of performance. Crossbar interconnection is scalable in

terms of performance and not scalable in terms of cost. An

intermediate class of network connection called multistage

interconnection network lies in between. This network consists of P

processing nodes and b memory banks. Figure 14 shows

commonly used Omega interconnection networks

2.2.3. Shared-Medium Networks.

Some network topologies share a common medium with multiple

nodes. At any one time, there may be a number of devices

attempting to send and receive data using the network media.

When two or more nodes are sending data at the same time, data

may be unusable due to collision. There are rules that govern how

these devices share the media to solve the collision problems.

There are two basic media access control methods for shared

medium:

CSMA/Collision Detection

CSMA/Collision Avoidance

Figure 14: Omega interconnection networks

www.manaraa.com

27

Dynamic networks are subjected to the following changes:

Topologies changes, as nodes are added and removed.

Traffic patterns change cyclically.

Overall network load changes.

2.2.4. Hybrid Networks.

Hybrid networks use a combination of any two or more topologies in such

a way that the resulting network does not exhibit one of the standard

topologies (e.g., bus, star, ring, etc.). For example, a tree network

connected to a tree network is still a tree network topology. A hybrid

topology is always produced when two different basic network topologies

are connected. Two common examples for Hybrid network are: ''star ring

network'' and ''star bus network "A Star ring network consists of two or

more star topologies connected using a [Media Access Unit multi station

access unit] (MAU) as a centralized hub. A Star Bus network consists of

two or more star topologies connected using a bus trunk (the bus trunk

serves as a network's backbone.

While grid and torus networks have found popularity in [high-

performance computing] applications, some systems have used [genetic

algorithms] to design custom networks that have the fewest possible

hops in between different nodes. Some of the resulting layouts are nearly

incomprehensible, although they function quite well.

A Snowflake topology is really a "Star of Stars" network, so it exhibits

characteristics of a hybrid network topology but is not composed of two

different basic network topologies being connected together.

Figure 15 :Shared-Medium Networks

www.manaraa.com

28

Definition: Hybrid topology is a combination of Bus, Star and ring

topology.

Routing Mechanism for Direct Networks.

The Internet is comprised of a mesh of routers interconnected by

links. Communication among nodes on the Internet (routers and

end-hosts) takes place using the Internet Protocol, commonly

known as IP.

IP datagram's (packets) travel over links from one router to the next

on their way towards their final destination. Each router performs a

forwarding decision on incoming packets to determine the packet’s

next-hop router

 Routing mechanism determines the path for messages from

source to destination. It affects network performance and speed. It

uses source and destination as inputs. Some routing techniques

adaptive, depends on the network state.

 Routing mechanism classifications depend on many factors

such as the distance from source to destination, the position of

routing decision and the number of addresses the message

contains.

Distance from Source to Destination Factor. The routing

mechanisms classify into two types: Minimal routing and non

minimal routing. The first one selects the shortest path from source

to destination. In the second the shortest path is not important in

selecting the routing. Minimal routing causes contentions in some

parts in the network, while the non minimal routing may use long

distance to avoid this problem (Duato et al, 1997).

www.manaraa.com

29

 Routing Decision Location Factor.

 Depending on this factor routing mechanisms are classified into

four types:

a. Centralized Routing.

A main controller updates all nodes routing tables.

Fault tolerant.

Suitable for small networks.

b. Distributed Routing. The responsibility of the routing process is

distributed among more than one router.

Route computation shared among nodes by exchanging.

Widely used.

c. Source Routing. The router of the source node is responsible

for routing the messages.

d. Hybrid Routing. The routing process is between Source routing

and distributed routing (Quinn, 1994).

 - Number of Addresses Factor.

 According to this factor, the routing mechanism is divided into two

types:

Unicast Routing. Message carries one address on this

mechanism. It uses point-to point communication between

processors. Despite, the simplicity of this type, time to complete

the communication process is the main disadvantage (Afek and

Gafni ,1991).

Multi destination Routing. Message carries more than one

address on this mechanism. It uses one-to-many communication

between processors (Foster, 1995).

www.manaraa.com

31

 There are two types of routing mechanism, deterministic routing as

shown in figure 16 and Adaptive routing. Current Deterministic

Routing. Deterministic (static) routing : fixed path Minimal and

deadlock free(Pimentel , 1999).

Adaptive Routing.

 Adaptive routing exploits alternative paths, Less prone to

contention and more fault-tolerant, Potential deadlocks.

 Reassembling of messages (out-of-order arrival of packets),

Cannot be source-based routing, Minimal or non-minimal , Partially

adaptive vs fully adaptive. This type uses the information regarding

the current state of the network to determine the path of the

message(Pimentel , 1999).

2.4 Research Assumptions.

This Research assumes the following:

Routers should work all the time even with fault node because the

fault is in leader properties.

Figure 16: Deterministic Routing

www.manaraa.com

31

All the communication links are bidirectional.

Leader node could fail due to different reasons which lead to lose

the leader property. Other nodes can detect this failure, when the

time out exceed without acknowledgement. Nodes detect this failure

start the election algorithm.

To solve leader failure problem, each node calculates a weight that

defines its relative importance. Then compares it with the weight of

other nodes that it has received and propagate the maximum

weight. This weight is represented in this dissertation by ID variable.

Each node has a distinguished ID. The election algorithm depends

on this ID.

The fault node shared in the election with ID = 0, so it can not win

the election.

 One intermittent link failure is recoverable.

 Leader failure may be detected by a subset of nodes (concurrent

failure). This case becomes complicated when the failure is detected

by N-1 nodes (worst case).

Each node has the following variables:

ID: A unique value for the election process.

Position: The label indicates its position.

Leader ID and Leader position.

Phase and step.

State: leader or normal or candidate.

Flags to synchronize the election algorithm.

www.manaraa.com

32

Chapter 3
Literature Review

3.1 Introduction

 In distributed systems the major problem that faces the

researchers and scientists is the single point of failure and the

relevant Leader Election Algorithms (LEAs) . Previous studies in

LEAs vary based on the following:

Topology type (e.g., tree, complete graph, meshes, torus, and

hypercube).

Communication Mechanism used (synchronous vs. asynchronous).

Transmission Media (wired vs. wireless or radio).

Some of the previous work dealt with the link failure.

 Most previous researches are based on mathematical proof to

verify their algorithms. They use minimum number of messages and

time steps to complete their algorithms. This chapter presents the

previous work in election algorithms and focus to the most relevant

researches.

3.2 Related Works

Zhenyu xu. and srimani p. 2006.

They proposed a new self-stabilizing anonymous LEA in a tree

graph. They showed the correctness of the protocol and also

showed that the protocol terminates in O(n4) time starting from any

arbitrary initial state. The protocol can elect either a leaf node or a

non leaf node (starting from the same initial state) depending on the

behavior of the daemon. This algorithm runs on arbitrary

anonymous tree graph, starting in the tree T and N(i) to be the set

of immediate neighbors of a node i in the tree. A node i is called leaf

node iff |N(i)|=1. A node i is called internal node if |N(i)| > 1. When

www.manaraa.com

33

the algorithm terminates, one and only one node is elected to be the

leader. All other nodes will have a local pointer that pointing to a

neighboring node which is on the unique path to the leader node in

the tree.

Vasudevan S. et al. (2005) .

 They presented a LEA that is highly adaptive to arbitrary

(possibly concurrent) topological changes and is therefore well-

suited for use in mobile ad hoc networks(MANETs). The algorithm

is based on finding an extremis and uses diffusing computations for

this purpose. They showed that, using alinear-time temporal logic,

that the algorithm is weakly. Self-stabilizing and terminating. Then

simulate the algorithm in a mobile and ad hoc (MANETs) setting.

Through the simulation study, it elaborate on several important

issues that can significantly impact performance of such a protocol

for mobile ad hoc networks such as choice of signaling, broadcast

nature of wireless medium etc. the simulation study shows that the

algorithm is quite effective in that each node has a leader

approximately 97-99% of the time in a variety of operating previous

algorithms are designed to perform random node election and

cannot be modified top perform extreme ending. It therefore

proposes an election algorithm to perform extreme-ending in a

highly dynamic and asynchronous environment such as found in a

mobile, ad hoc network. Unlike existing work on leader election, an

important contribution of this paper is that it presents a very

systematic and methodical evaluation of our leader election

algorithm based on simulations in a mobile, wireless setting. The

simulation study provides useful insights relating to the design of our

algorithm and the signaling used. As we will see, the paper exploits

these insights to develop a very efficient leader election algorithm.

www.manaraa.com

34

 Villadanjos s. et al, (2006).

 They analyzes the algorithms for leader election in

complete networks using asynchronous communication channels.

They presented a novel algorithm that reduces the information

necessary to select a leader compared with other leader election

algorithms for complete networks. They showed that, the algorithm

works without sense of direction means, in general, that given a

graph G ≡ (V,E), being V the nodes of the graph, E its set of edges

between nodes of V and E(n) the edges of node n in G;. There are

different alternatives for sense of direction functions, which derive in

different sense of direction definitions. And, it does not require to

know the number of nodes in the system. The proposal of this paper

requires O(n) messages and O(n) time, where n is the number of

nodes in the system, to elect a leader.

Zhang (2009).

 They presented, a low-level asynchronous algorithm with the

collision avoidance mechanism, and solved the problem. They

designed experiments in application layer. The leader-elected time

was from those experiments and the result was compared with

synchronous algorithm. This algorithm can be used in fire fighting,

construction supervision and rescue work in which a hierarchy ad

hoc network is required to dynamically be established. By electing a

new leader in case of previous leader loss, the algorithm can

enhance the robustness of whole network.

The proposed algorithm elects leader node in a hierarchy ad hoc

network. So the whole network must be established before the

algorithm designs the steps for setup as follows:

Each node detects nearby connectable nodes, and notes them as

neighbor nodes.

www.manaraa.com

35

Root node sends the SETUP message to its neighbors each node

has a value called SETUP_VISITED to mark whether received

SETUP messages.

After received the message, node compared its own Cluster ID. If

equaled, continue the following operation, else abandon the

message.

Because the node still can be the leader of bottom level cluster, after

replying the ACK messages, we repeat step (b) until there is no

unvisited node in the network.

Ramanathan, et al. (2000) .

 They present an efficient randomized algorithm for leader

election in large-scale distributed systems. They proposed that

algorithm is optimal in message complexity (O(n) for a set of n total

processes), has round complexity logarithmic in the number of

processes in the system, and provides high probabilistic guarantees

on the election of a unique leader. The algorithm relies on balls and

bins abstraction and works in two phases. The main novelty of the

work is in the first phase where the number of contending processes

is reduced in a controlled manner.

The main contributions of their work can be summarized as follows:

 A randomized leader election algorithm that is optimal in the

number of messages in the election phase O(n), has round

complexity logarithmic in the number of processes in the system

O(log n), and elects a unique leader .

 An approach in which the lack of global information is intelligently

leveraged to prune the number of processes participating in the

leader election algorithm.

www.manaraa.com

36

An asynchronous version of the first phase of the algorithm and a

partially synchronous version of the second phase so that the

algorithm can be effectively Realized for general distributed

applications.

 A rigorous analysis to prove the correctness and the complexity of

the algorithm. This paper presents the design of an efficient

randomized algorithm for leader election in large-scale distributed

systems. The algorithm guarantees correctness with high probability

and has optimal message complexity O(n). To our knowledge, this

is the first result providing high probabilistic guarantees with optimal

message complexity for a general topology. It proposes variants of

the algorithm for synchronous as well as asynchronous

environments. It gives an analysis for the correctness of the

algorithm and bounds on the number of messages and the number

of rounds. Acknowledgments.

Zargarnata j. (2007).

 He Presented a new method based on electing a leader

and assistant. If the leader crash, the assistant takes, care of the

leader's responsibilities. The result revealed that often, after a

leader crash, leader assistant elect as a leader and continues to

work. This is important when the scale of network increases the

important of this paper is the novel solution to leader election. And

here the method uses an assistant for a leader and when there is a

leader crash, the assistant coordinate all nodes immediately. This

method causes that always the leader and assistant represent best

performance to other nodes. The method of this paper is, when the

number of nodes increases the performance increases. This method

has the following characteristics: While the existing

www.manaraa.com

37

 algorithm elect new leader, after leader's crash, the proposed

method uses assistant immediately. While the existing algorithms

have developed with the specific network topology, the proposed

method can apply to any network topologies and while the pre-

election method elects the provisional leader that doesn't have

enough efficiency, the proposed method elects the assistant that is

more efficient for all nodes except the leader.

Ando et al. (2008).

 They presented two new randomized leader election protocols in n-

station RN with no knowledge of n. The expected O(log(n)) time

complexity of both Algorithms in the paper achieves a quasi-

optimality (up to a constant factor) with each station keeping awake

for O(log(n)) time slots in both algorithms. The contribution of this

paper is to propose a class of energy efficient and quasi-optimal

leader election protocols In this paper, It present two new

randomized leader election protocols in n-station RN with no

knowledge of n. The expected O (log (n)) time complexity of both

algorithms achieves a quasi-optimality (up to a constant factor), with

each station keeping awake for O(log (n)) time slots in both

algorithms. Finally, It gives a lower bound Ω(log n) on the space

complexity, that is, it shows that it is impossible to construct a

leader election algorithm if only log n bits are available for a

processor. Its important to know that, For asynchronous,

anonymous network in which processors communicate with each

other by message passing, we showed an upper bound O(n log d)

and a lower bound Ω(log n) on the space complexity. These bounds

are for the leader election algorithm that solves arbitrary n.

www.manaraa.com

38

The space complexity Ω(log n) arises because the algorithm needs

to be applicable for any n. We showed how to construct an

algorithm that uses only one bit local memory when n is fixed.

Lavault, et al. (2003).

 They designed and analyzed two distributed leader

election protocols in radio networks (RNs) where the number n of

radio stations is unknown. Where the first algorithm runs under the

assumption of Limited collision direction, while the second assumes

the other one assumed that no collision detection is available. By

“limited collision detection, which means that exactly one station

sends (broadcast a message. then all stations (including the

transmission that are listening at this moment receive the sent

message. By contrast, the second no-collision detection algorithm

assumes that a station cannot simultaneously send and listened

signals. Moreover both protocols allow the stations to keep asleep

as long as possible, thus minimizing their awake time slots (such

algorithms are called energy efficient). Both randomized protocols

in RN are shown to elect a leader in O(log log (n)) time slot.

Mirakhorli, et al. (2007).

 They proposed algorithm in which each node does not

need knowing any structure such as ring algorithm; also, it does not

need knowing higher ID nodes. It is based on Introducing several

nodes as candidate nodes that reduces the number of required

messages. The complexity of proposed algorithm is smaller than

bully algorithm and competes with ring algorithm. Also, in ring

algorithm, all of the nodes know a logical ring structure between

nodes that is drawback of ring algorithms then it simulated bully and

www.manaraa.com

39

ring and our algorithm with computer and the results is shown in

Table 1. The crash probability of each node is 0.01 and the number

of candidate nodes is 5.

N Bully Ring paper

Algorithm

100 289 200 101

1000 18,204 2,000 1,000

10,000 1,705,560 20,000 10,000

100,000 169,499,620 200,000 1 100,002

 Experiments show that thier algorithm needs small messages

rather than two other algorithms. When N is large, the bully

algorithm needs very large number of required messages. The ring

algorithm is better than Bully algorithm but its number of messages

is two times of our algorithm approximately.

 Shirali, et al. (2008).

 They provided a review on LEAs and designing issues. Now

depending on your network condition, you can design the best

architecture. For example now you know that in the small networks,

bully algorithms are the best one. However if you have a ring

network, you choose the ring algorithm and if your network is vast

and has a lots of nodes, considering number of collisions and

depending on the conditions like position of nodes, the distance

between them and duple Xing of the links you can use one of the

above algorithms or a combination of them. Below Sun Algorithm

Idea:

www.manaraa.com

41

Number of messages = (m+ n) + m +(m + n) => O(m + n)

Latency = 4(m) + 2(n/m) => O(m + (n/m))

Kutyłowski1, et al. (2003).

They present an approach that yields a randomized LEAs for a

single-hop no-CD radio network. The algorithm has time complexity

O(log3N) and energy cost O(log N). This is worse than the best

algorithms constructed so far (O(logN) time and O(log_N) energy

cost), but succeeds in presence of an adversary with energy cost

logN) with probability 2- sqrt(logN). (The O(log_N) energy cost

algorithm can be attacked by an adversary with energy cost O(1)).

The algorithm offers some additional features – it yields a group of

logN) active stations which know each other. This can turn out to

be useful for replacing a leader that gets faulty or exhausts it energy

resources. Certainly, the solution presented is only a small step

towards a secure network self organization.

Svensson, and Thomas ,(2005).

 This paper introduce a new implementation of a leader

election algorithm used in the generic leader behavior known as

generate leader. The first open source release of the generic leader

contains a few errors. The new implementation is based on a

different algorithm, which has been adopted to fulfill the existing

requirements. The testing techniques used to identify the errors in

the first implementation have also been used to check the

implementation it proposes here. The paper even extended the

amount of testing and used an additional new testing technique to

increase our confidence in the implementation of this very tricky

algorithm. The new implementation passed all tests successfully.

Then the paper describes the algorithm and discusses the testing

www.manaraa.com

41

 techniques used during the implementation. In this case they are

interested in a solution that is fault-tolerant with respect to failing and

restarting processes and failing and restarting nodes. We assume

Erlang nodes to have reliable communication without lost messages

(basically the TCP/IP setting in which all nodes can directly

communicate with all other nodes in a reliable way). In the open

source Erlang community presented an implementation of a leader

election algorithm. This implementation is based on an article written

by Singh but contains numerous adaptations to the Erlang setting.

The implementation originates from the work at Ericsson with the

AXD 301 telecommunication switch, but has been rewritten and

turned into the OTP behavior gen leader. From a user point of view,

the generic leader behaves like a generic server with callback

functions like call and cast. The intended use is that of having one

generic leader per node and clients access only the generic leader

on their node. The generic leaders communicate with each other

and forward all requests to the chosen leader. In some rare

circumstances, two leaders can be elected at the same time. In

addition, there is a possibility that the election of a new leader stands

in a deadlock. The system may run for years without showing any

failure, but there is always the potential danger that one day the

circumstances are exactly such that those faults occur. After failing

to repair the implementation they proceeded to make a new

implementation based on another algorithm. The new

implementation is based on the article ‘Leader Election in

Distributed Systems with Crash Failures’ by Stoller. Compared with

Singh, Stoller takes a slightly different approach to the leader

election problem, which seems to fit better into the Erlang setting.

www.manaraa.com

42

 However, they still had to modify the algorithm, since it was

designed for a completely different situation. they took care to

supply the same interface for this new implementation as defined for

the original, incorrect, implementation. However, due to the

differences in the implemented algorithms the interface functions

that return all alive nodes and the one returning all dead nodes,

could not be provided. Apart from that the behavior of the new

implementation should be, when viewed from the outside, the same

as the behavior of the old implementation. Except for the failures,

they have tested the implementation thoroughly, using both the test

method with abstract traces that revealed the errors in the original

implementation.

 Bagchi, and Das, 2005.

 This paper proposes a round-2 randomized algorithm

to elect a leader and co-leader of the server group without assuming

any particular network topology. The algorithm is implemented and

the network-paging latency values of wireless network are

measured experimentally. Results indicate that in most cases the

algorithm successfully terminates in first round. The network-paging

latency values indicate that MDVM system is realizable using 3G/4G

wireless communication systems. In addition, the overall message

complexity of the algorithm is O(|Na|), where Na is the size of the

server-group. network-paging latency values are experimentally

evaluated for LAN, Wireless VPN and 2.5G GPRS systems

connecting a mobile client and a server in SG, where SG is a

component of the MDVM system architecture. The proposed

algorithm assigns the node IDs to the MDVM servers online and

does not rely on the static pre-assigned node IDs. The algorithm is

implemented in the distributed system setup.

www.manaraa.com

43

The experimental results illustrate that the algorithm terminates in

the first round of election phase in majority cases by electing a

unique leader and co-leader of the SG. The round ratio values

decrease with the increase in the number of MDVM servers. In

addition, the number of randomly chosen servers entering in the

second round of election phase is substantially reduced as

compared to the initial set of servers. The experimental results

illustrate that the filter ratio values decrease significantly with the

increase in the size of SG. The proposed algorithm is realizable, free

from any assumption regarding static node IDs, network topology

and buffer space limitations. The experimental values of network-

paging latencies between the mobile-clients and servers of the SG

indicate that MDVM system comprised of SG is realizable using

3G/4G mobile communication technologies. The overall message

complexity of the algorithm is O(|Na|) where, |Na| is the total number

of MDVM servers in a SG.

 Derhab and Badache, (2008).

 They proposed a self-stabilizing leader election

algorithm that can tolerate multiple concurrent topological changes.

By introducing the time-interval-based computation concept, the

algorithm ensures that a network partition can within a finite time

converge to a legitimate state even if topological changes occur

during the convergence time. Our simulation results show that their

algorithm can ensure that each node has a leader over 99 percent

of the time. We also give an upper bound on the frequency at which

network components merge to guarantee the convergence. The

algorithm can converge to a legitimate state even in the presence of

www.manaraa.com

44

 topological changes during convergence time. By defining

concurrent and disjoint computations and their corresponding

intervals, an older reference level encompasses any new one

belonging to its equivalence class. In the same way, an older DAG

propagation encompasses new ones. Simulation results show that

the proposed self stabilizing leader election algorithm experiences

very optimal results in terms of the fraction of stabilization time,

convergence time, and message overhead compared to Malpani’s

algorithm. It provided a novel observation about self-stabilization by

defining the unstable period by the time period that begins when a

component C that contains a node i enters an illegitimate state and

terminates when this particular component is again in a legitimate

state. By determining the frequency at which merging can occur, it

has shown that the unstable period is bounded.

Castillo, et al. (2007).

 This paper proposed A modified algorithm Compared

with The original algorithm, introduced by Villadangos which, had

the aim of reducing the number of exchanged messages in order to

select a leader. However, the original O(n) algorithm fails to choose

a leader on several occasions. A modified algorithm, which

eliminates the problems that cause the wrong behavior, is proposed

here. It is formally proved that the new algorithm verifies the

correctness criteria that consist of selecting a unique leader in every

case. Additionally, the algorithm maintains the O(n) complexity in

both messages and time, where n is the number of nodes in the

system. Conclusions of this paper are to a modified leader election

algorithm to choose a leader in a complete network. Then illustrated

through various examples how the algorithm presented by

Villadangos failed to work correctly in some situations.

www.manaraa.com

45

Ingram, et al (2009).

 They presented algorithm for electing a leader in an

asynchronous network with dynamically changing communication

topology. The algorithm ensures that, no matter what pattern of

topology changes occur, if topology changes cease, then eventually

every connected component contains a unique leader. The

algorithm combines ideas from the Temporally Ordered Routing

Algorithm (TORA) for mobile ad hoc networks with a wave algorithm

all within the framework of a height-based mechanism for reversing

the logical direction of communication links. It is proved that in

certain well-behaved situations, a new leader is not elected

unnecessarily We assume a system consisting of a set P of

computing nodes and a set L of bidirectional communication links

between nodes. L consists of one link for each unordered pair of

nodes, i.e., every possible link is represented. The nodes are

assumed to be completely reliable. The links between nodes go up

and down, due to the movement of the nodes. While a link is up, the

communication across it is in first-in-first-out order and is reliable but

asynchronous. They model the whole system as a set of (infinite)

state machines that interact through shared events. Each node and

each link is modeled as a separate state machine. The shared

events are Link Up/Down notifications and receipt of messages, all

of which are controlled and initiated by the link and responded to by

the node. The sending of a message is also a shared event, but it is

controlled and initiated by the node and responded to by the link.

Alvarado-Magana and Fernandez-Zepeda, 2007.

www.manaraa.com

46

This paper present algorithm to modify the algorithm of Xu and

Srimani (Self-Stabilizing Anonymous Leader Election in a Tree)that

finds a leader in atree graph. The worst case execution time for this

algorithm is O(N4), where N is the number of nodes in the tree.

Svante Janson, Christian Lavault, Guy Louchard, (2008)

 They presented a probabilistic analysis of algorithm under

some conditions on the probability distributions P(n, k),including

stochastic monotonicity and the assumption that roughly a fixed

proportion α start with a set of n players. With some probability P(n,

k), suggest to kill n−k players; the other ones stay alive, and we

repeat with them. What is the distribution of the number Xn of

phases (or rounds) before getting only one player including

stochastic monotonicity and the assumption that roughly a fixed

proportion α of the players survive in each round. It prove a kind of

convergence in distribution for Xn − log1/_ n; as in many other

similar problems there are oscillations and no true limit distribution,

but suitable subsequences converge, and there is an absolutely

continuous random variable Z such that, The paper general

convergence theorem by considering a general leader election

algorithm in the paper Note that the mean number of needed

messages is asymptotically 2n log3(n), as we use 2n messages per

round.

Ali, et al, (2009)

The proposed algorithm that relies on collecting and re-distributing

information amongst local nodes in order to find the leader. It is

based on the assumption that if this process is repeated sufficiently

then the algorithm will converge towards a unique leader. It is shown

that the proposed mechanism outperforms existing algorithms in

terms of time complexity and response to node mobility.

www.manaraa.com

47

The algorithm was simulated for Bluetooth ad hoc networks, which,

by default, rely on a master/slave architecture, however, the

cooperative approach could be adapted to any network that exhibits

the master/slave configuration such as clustered ad hoc networks

or Zig Bee-based sensor networks. This paper presented a novel

leader election algorithm for master/slave mobile ad hoc networks

and showed that it scales well with network size and node mobility.

The algorithm exploits knowledge of the underlying network, which

is obtained through a random tour, in order to estimate the number

of rounds a master needs to repeat the election procedure for a

leader to be elected. When compared to Tree-based algorithms, it

was shown that the cooperative approach performs better in terms

of convergence time as well as the response to node mobility, which

makes it more attractive for ad hoc settings that exhibit spontaneous

changes in topology. Furthermore, the cooperative election

approach may be applied to other types of ad hoc networks without

any major modifications. This will be investigated in the future.

Heutelbeck & Hemmje, (2009).

 This paper uses a peer-to-peer data structure, the so-

called distributed space partitioning tree (DSPT). A DSPT is a

general use peer-to-peer data structure, similar to distributed hash

tables (DHTs), that allows publishing, updating of, and searching for

dynamic sets. In this paper we present an efficient distributed leader

election algorithm that can be used in DSPTs to eliminate redundant

network traffic DSPTs are relevant for many interesting application

in mobile computing,. this paper described the algorithm IIS to solve

the redundant reply problem in DSPTs. As the algorithm makes no

assumptions on the way the search space is partitioned by the

www.manaraa.com

48

DSPT, we expect that it will be possible to apply the algorithm in

new future DSPT implementations, going beyond the DSPT

realization by the authors of this paper. The algorithm presented

here solves the redundant reply problem without introducing new

communication costs to the DSPT. We also conducted some

experiments that indicate that the heuristic used in IIS significantly

improves the running time of the algorithm for real-world location

data.

www.manaraa.com

49

Chapter 4
leader election algorithms

4.1 Introduction

 The LEA is a program distributed over all nodes. As discussed

in chapter one and two, It starts when the leader failure is detected

by one process at a simple case or by all processes at the worst

case. It terminates when all processes are aware of the new elected

leader (Singh G., (1996). The function of LEA is to move the system

from an initial state, where all nodes are in the same computation

state, to a new state in which one of these nodes is a leader or a

coordinator (Tanenbaum, A.,2002). The current LEAs for the 3D

torus networks did not solve the leader failure problem with the

existence of link failure. This dissertation presents a new solution for

leader election problem in the 3D torus with the presence of links

failure to enhance previous algorithms. So, the proposed solutions

will take in consideration, the existence of links failure along with

leader failure problem.

 This research aims to present two new algorithms. The first

one solves the leader failure problem in three dimensional torus

networks despite existence of one link failure, while the second

one solves the problem despite the presence of two links failure.

Before algorithms discussion, this chapter starts with model

description in the next section.

4.2 Model Description and Assumptions.

3D torus network is not different from the 3D mesh except in the

connections between the first and the last nodes in each dimension.

These connections make all nodes connected with six neighbors

www.manaraa.com

51

(X, Y, Z) which are (right, left, front, back, up and down). Figure -17

shows the directions in the proposed topology and Figure -18 shows

a three dimensional torus network with (3 X 3 X 3) dimensions.

This research assumes the following:

1- The nodes regularly form an X, Y, Z three Dimensional torus network

as shown in Figures 17 and 18.

2- The network contains N nodes numbered from 0 to N-1.

3- The position of nodes designated by (X,Y,Z), from (0,0,0) to (X-1,Y-1,

Z-1).

4- Communication is with only one node at a time. Multicast is not

implemented.

Figure 17: directions in 3D torus

www.manaraa.com

51

5- A node can send or receive simultaneously to and from the same or

different nodes.

6- The network uses XYZ -routing: a message is routed within X-axis to

then Y-axis then Z-axis that contains the destination node.

7- Leader failure may occur at any time. This failure may be discovered by

one node in a simple case, or concurrently by more than one node which

reaches at the worst case N-1 nodes.

8- Each node is connected by six links (right, left, front, back, up, down)

as shown in Figure-17.

All links are bidirectional.

10 - Leader failure means that node loses the ability of control, but it can

send and receive messages.

11- The existence of one link failure is probable in the first algorithm (link

failure means that the messages can not pass through the link in both

directions). In the second algorithm two links failure are probable.

12- Each node has distinguished Wid used in the election algorithm.

Z

Y

X

Figure 18: (3 X 3X 3) Torus Networks

www.manaraa.com

52

4.3 Leader Election Algorithms in 3D torus Networks.

 In this section the proposed algorithms will be presented. Before

describing the first algorithm, the definition of the following variables will

assist to understand the algorithm:

Wid: For a given process on processor node i there is set of attributes

such as storage capacity, CPU speed, battery age, ram speed ,…, let us

use A={A1,A2,…..Ak}, where k is the number of attributes ,and Wid is the

weight value which will be computed from these attributes. To every node

in the network, we will use this value to compare Wid for every node with

others to elect the leader to be the one with the highest value .

Node State: during the execution of the algorithm, the node will be in one

of the following states:

Leader: one node must have this state in a stable network.

Candidate: there is a failure and the election process is in progress inside

this node.

Normal: the network is normal and no leader failure is detected by this

node.

4.3.1 Leader Election in 3D Torus Networks with one Link

Failure

This algorithm is composed of five phases as follows.

Phase One: The algorithm starts by a node that detects leader failures

with n locations. This node changes its state to candidate. It sends (failure

messages) through X axes (right , left) and through Y axes front , back to

inform all neighbors in the same 2D torus about the failure. Each node

which receives failure message makes the following:

Node state changes to candidate.

Passes the failure message to the opposite direction through the opposite

links depending on the direction from which it has received the message.

Start phase two: selects its Wid as greater Wid , and send election message

through links (z axis up direction) to the node with n by n. The election

message is composed of (message type, Phase, Step, Greater Wid, and

Position of the Greater Wid , Message initiator). If the state is candidate,

the received message is ignored.

www.manaraa.com

53

Note: to avoid the probability of link failure in phase one, the proposed

algorithm sends failure messages in two directions (left and right) in X

axis and (front and back) in Y axis. Phase one guarantees that all nodes

in the 2D level which have the node(s), that detects the failure, are

informed about the leader failure. Each node from this level starts phase

2 by sending an election message in the column Z, as it follows in phase

2.

Phase two.

Candidate

nodes, that have been informed about leader failure in phase one, send

election messages through Z -axis (Up). Any node which receives the

election message compares its Wid with the receiving Wid, and continue

with the greater Wid . When the election message reaches the node that

it starts the process (complete ring), it sends the result of election to the

first node in the column. The proposed algorithm puts the results of phase

two in the first node of each column with (Z=0) i.e. (X,Y,0). Phase two faces

two problems, concurrent phase two initialization in the same ring and

link failure. To deal with the first problem: any candidate node receives

an election message and, its coordinator position is greater than the

initiator of the message position, it will ignore the message because it has

started the phase so there is no need to repeat the process. If there

Figure 19: link failure in phase 2

www.manaraa.com

54

is no link failure, the result for the column is found in the node that

completes the ring. This node sends the result to the node labeled (X, Y,

0).

 To solve the second problem, the node that sends an election message,

waits for acknowledgment. If the node doesn’t receive this message after

time out, it detects that there is a link failure. The role of the node that

detects the link failure is, to send a link-failure message through the link

to its right (+x), then the node that receives the link-failure message from

left(-x) forwards it through up(+z) then left (-x)and then bypass the link

failure. Figure -19 and table 2 shows the solution of link failure in phase

two.

 Phase Three:

 Nodes that finish phase two with (y) position equal 0, start phase three

by sending election messages through Y axes forward +y. Any node that

receives the election message, compares its Wid with the receiv Wid , and

continues with the greater Wid . If a sender doesn’t received

acknowledgment message after time out, it assumes that there is a link

failure. To solve this problem, it sends a link-failure message through link

Right (+x) (forward +y) then link (left -x axis (backward) and forwards it

left to bypass the link failure. The proposed algorithm puts the results of

phase three in the row with (X,0,0) coordinates. Figure 20 shows phase

three steps and link failure solution by detour.

www.manaraa.com

55

Phase Four:

 After phase three the new leader Wid is available in the row labeled

(X,0,0). When node (0,0,0) finishes phase three, it starts phase four by

sending an election message through links X-axis(right). Any node that

receives a phase four election message from left direction, sends an

acknowledgment message. It compares Wids and sends a phase four

election message to the right of X. If the node doesn’t receive the

acknowledgment message after time out, it detects that there is a link

failure. To solve this problem in this phase, it sends a link-failure message

through link y-axis forward +y then link –x then -y to bypass the link

failure. Phase four is terminated when the phase four election message is

received by node (0,0,0). This node starts phase five by broadcasting the

result to all nodes. Figure 21 shows phase four election steps and link

failure solution

Figure 21: Phase 3 election steps and link failure solution

Figure 21: phase four election steps and link failure solution

www.manaraa.com

56

Phase Five:

 At the end of phase four, only one node is aware of the new leader

information. This node broadcasts the result as follows:

 X-axis broadcast: node (0, 0, 0) sends a leader message in two directions

through links -X and +X (left, right) to inform all nodes in the x-axis of the

new leader information.

Y-axis broadcast: node (0, 0, 0) and nodes on X-axis nodes send the

leader message to nodes in front and back to inform the Y axis of the new

leader information.

Z-axis broadcast: all nodes in the 2D (X, Y, 0) inform by sending the leader

message through links Up and down to inform Z axis of the new leader

information. Each node that receives the Z axis broadcast changes its

state to normal and changes its contents information according to t he

leader message (Any node aware of the new leader in phase five ignores

any new message about election algorithm).

In phase five, initiators of the leader message, within the X, Y, Z axises

send the leader message in two directions, to tolerate the probability of

one link failure as shown in Figure 22. The broadcasting of leader

message is done through X axes then Y axes then Z axes.

Det # Link failure Direction Detour Routing

1 + Z +X(RIGHT),+Z(UP),-X(LEFT)

2 +y +X(RIGHT),+y(FORWORD),-X(LEFT)

3 +x +Y(FORWORD), +X (RIGHT),-Y(BACKWORD)

4 - Z +X(RIGHT),-Z(UP),-X(LEFT)

5 -y +X(RIGHT),-y(FORWORD),-X(LEFT)

6 -x +Y(FORWORD), -X (RIGHT),-Y(BACKWORD)

Table 2: Link failure solution by detours

www.manaraa.com

57

 4.3.2 Leader election In 3D torus networks with Two links

failure

Second algorithm deals with the presence of two links failure. The main

idea to solve the problem is by using more detours in all directions to

pass the messages over the link failure. Thinking of more links failure will

be researched to reach best solutions in this dissertation. The second

algorithm is designed to solve the probability of two links failure. It is also

composed of five phases as in the first one as follow:

Phase one: The algorithm starts by a node(s) that detects leader failures

in any locations. This node changes its state to candidate. It sends (failure

messages) through X axes right (+X) and through Y axes forward (+Y), to

inform all neighbors in the same 2D torus about the leader failure.

Each node which receives leader failure message makes the following:

Node state changes to candidate.

Passes the failure message to the opposite direction through the opposite

links depending on the direction from which it has received the message.

Start phase two: selects its Wid as greater Wid , and send election message

through links (z axis up direction).

Figure 22 :Phase five Broadcast leader message through all axes

www.manaraa.com

58

 The election message is composed of (message type, Phase, Step,

Greater Wid, and Position of the Greater Wid , Message initiator). If the

state is candidate, the received message is ignored.

Note: to solve the probability of links failure in all phases in this algorithm

sender wait for acknowledgement message from receiver, then after time

out it uses the detour way to bypass the message to the target node. This

way is applied even if the second link failure in the detour itself. Detour

routing depends on the direction of the missed message as it shown in

table 2. Phase one guarantee that all nodes in the 2D level which have the

node(s), that detects the failure, are informed about the leader failure.

Each node from this level starts phase 2 by sending an election message

in the column Z, as it follows in phase 2.

Phase two: Nodes in candidate state continue election process by sending

election message to the neighbor up on the +Z axes. If the message is

received successfully, The receiver sends acknowledgment messages to

the sender and continues to send leader election messages up to the next

neighbor. Any node which receives the election message compares its

Wid with the receiving Wid, and continues with the greater Wid. When the

election message reaches the node that it starts the process, it sends the

result of election to the first node in the column. Eventually this phase

puts the results of phase two in the first node of each column with (Z=0)

or (x, y, 0). To solve the probability of two links failure in phase two, as in

phase one, this algorithm uses detours way, to by pass the message to

the target node. This way is applied even if the second link failure in the

detour itself. Detour routing depends on the direction of the missed

message as it shown in table 2. The links failure in the second phase is

explained as follow:

1- If the node that detected link failure in the link is (up)(+z), it sends link

failure message using detour number 1 from table 2 which uses the

following path +X(RIGHT),+Z(UP),-X(LEFT). If the node detects a link

failure for the second time in link +X it sends link failure message using

detour 3 +Y(FORWORD), +X (RIGHT),-Y(BACKWORD).

 By this way the algorithm continues until the message reaches its target

Figure-23.

www.manaraa.com

59

Phase-3: Nodes in the 2D torus Z = 0 and Y = 0, or (x,0, 0) start the election

in the Y axes, to obtain the result in one row, Y = 0, Z=0 row, which is

(x,0,0). If the message is received successfully, the receiver will send

acknowledgment message to the sender and continues to send leader

election messages to the next neighbor in the direction of +Y. This

process continues until the message return to the initiator candidate

node. The role of these nodes is to wait for phase 4 except node (0,0,0) it

starts phase four.

To solve the probability of one or two Links failure in +Y, there will be an

alternative path +X (RIGHT),+Y(FORWORD),-X(LEFT). the node that

detect a link failure will send a link failure message to the node that is in

the direction +X ,if the node from the right is +X ,it sends acknowledgment

to the node that send link failure message to continue in the alternative

path (+X,+Y,-X) in the direction of +Y if the node doesn’t receive the

acknowledgment message after time out, it detects that there is a link

failure in the direction of +Y. To solve this problem in this phase, it sends

a link-failure message through link to the right on the X-axis, and

continue the new alternative path (+X, +Y,-X) to inform the node in the +Y

direction as in the figure 24 .

Figure 23: two link failure phase two

www.manaraa.com

61

If the second Link failure is in the direction -X, there will be alternate path

(+X ,+Y,-X) the node that detect a link failure will send a link failure

message to the node that is in the direction in +X ,if the node is from the

right +X ,send acknowledgment to the node that send link failure the

message will continue in the alternate path (+X,+Y,-X)in the direction of

+Y ,then continue to the direction –X if the node doesn’t receive the

acknowledgment message after time out, it detects that there is a link

failure. In the direction of -X To solve this problem in this phase, it sends

a link-failure message through detour number 6 as in table 2

+Y(FORWORD), -X (RIGHT), -Y(BACKWORD), and continue the new

alternate path to inform the node in the +Y direction as in Figure 25

Phase four: Node (0 , 0, 0) start phase 4 by sending election message to

its neighbor in X-axis, to make the election in one row to obtain the result

in one node X=0,Y=0

,Z=0.

Figure 24: phase two link failure

Figure 25 phase four election

www.manaraa.com

61

Note: to avoid the probability of links failure in phase four the algorithm

uses detours way as in table 2 for any link failure even if the second link

failure is in the detour itself.

This phase has the following states of two links failure:

 State 1- Links failure in directions +X and +Y

If the sender sends an election message to the right and doesn’t receive

acknowledgment after time out it detects that there is a link failure in the

direction of +X . this node use the detour number 3 from table 2

+Y(FORWORD), +X(RIGHT),-Y(BACKWORD) to bypass the message to

the target. At the first step in the detour, if the sender doesn't receive

acknowledgment after time out it detects the exist of another link failure

in the direction +Y. to solve the problem algorithm use detour number 2

from table 2 +X(RIGHT),+y(FORWORD),-X(LEFT) to bypass the second

link failure continue to the target node for the message. Figure 26 explains

this case.

State 2- Links failure in directions +X and +X

If the sender send an election message to the right and doesn’t receive

acknowledgment after timeout it detect that there is a link failure in the

direction of

Figure 26: phase four election two link failure +y, +x

www.manaraa.com

62

+X. This node uses the detour number 3 from table 2 +Y (FORWORD), +X

(RIGHT),-Y (BACKWORD) to bypass the message to the target. At the first

step in the detour, the message is successful to reach the node but in the

second step in detour. the sender doesn't receive acknowledgment after

time out it detects the existence another link failure in the direction +X. to

solve the problem algorithm uses detour number 3 from table 2

+Y(FORWORD), +X(RIGHT),-Y(BACKWORD) to bypass the second link

failure then continue to the target node for the message. Figure 27

explains this case.

State 3- Links failure in directions +X and -Y

If the sender sends an election message to the right and doesn’t receive

acknowledgment after timeout it detects that there is a link failure in the

Figure 27: with two link failure +x, +x

Figure 28: two Links failure in directions +X and -Y

www.manaraa.com

63

direction of +X. This node use the detour number 3 from table 2 +Y

(FORWORD), +X (RIGHT),-Y (BACKWORD) to bypass the message to the

target. At the first and second steps in the detour, the message is

successful to reach the node. but in the third step the sender doesn't

receive acknowledgment after time is out it detects the existence of

another link failure in the direction -Y. To solve the problem, algorithm

use detour number 5 from table 2 +X(RIGHT),-y(FORWORD),-X(LEFT) to

bypass the second link failure then continues to the target node for the

message.

Phase Five:

At the end of phase four, only one node is aware of the new leader

information node (0, 0, 0). This node broadcasts leader message in three

steps : the first step is to send the leader message in two directions (+,-)

X to inform all nodes in the X axis of the new leader information. In the

second step each node finish the first step send the leader message in Y

axes in two direction (+,-)Y to inform the firs 2D torus about the new

leader. Each node in this 2D torus send leader message in Z axes to

complete the leader message broadcast. Any node aware of the new

leader in phase five ignores any new message about election algorithm.

To deal with two links failure, our algorithm use detour way as in table 2

to bypass the links failure as discussed in phase 4.

4.4 State diagram and flow chart.

The algorithm starts when normal state node detects the leader

failure Figure 30. The first reaction is to change the state to

candidate. Another way for the node in normal state, to become

candidate is when inform about the leader failure by any message.

The transition from leader state to failure state occurs when the

leader node crashes, and loses leader properties. If the failed

process returns, the state is changed to normal. Also the candidate

state transition has two outcomes: change to leader if the leader ID

= Local ID or change to normal if the leader ID is greater than Local

ID.

www.manaraa.com

64

To explain the idea Figure 29 shows that the finite state machine is

composed of four states and transitions,(normal, candidate ,failed

,leader).

Initially a process does not know the ID of the leader, and,

consequently it can not decide whether it becomes a leader or not.

Once the identity of the leader is known, there are two possible

outcomes: the process should become (the new) Leader or not.

From the above, we conclude that a process may be in one of the

following possible states: Candidate, the start state of the FSM when

the node detects the leader failure or receives any message mention

the leader failure. In candidate state, the node does not yet know

whether it will become a leader or not. The second state is Leader

when it actually is a leader. A node is in a normal state, when the

network has no failure and the node is not a leader. It is in a failed

state when the leader node crashes and loses, the leader

properties.

www.manaraa.com

65

Figure 29 : State diagram for node in LEA

www.manaraa.com

66

Flowchart of the solution of the problem

www.manaraa.com

67

Chapter 5
algorithms performance evaluation

5.1 Introduction

 This research uses mathematical analyses to evaluate the

performance of the proposed algorithm. The evaluation is carried

out by computing the number of messages and time steps for each

algorithm. The analyses process is carried out for two cases. The

first case is the simple case, when the failure is detected by one

node. While the second case, is when the leader failure is detected

by subset of nodes which can reach all nodes in the worst case. In

section 5.2, the first proposed algorithm is analyzed. Section 5.3

presents performance evaluation for the second algorithm. Section

5.4 presents simulation proof for the proposed algorithm.

5.2 Leader Election in 3D Torus Networks with One Link Failure

Analyses.

 In this section the first algorithm is evaluated and its performance

is computed mathematically. Section 5.2.1 analyzes performance

from the number of messages perspective. On the other hand

section 5.2.2 shows the analyses from time steps perspective. In

both analyses simple case the leader failure is detected byone node

to the worst case when the leader failure is detected by a subset of

nodes reached to N-1 nodes are considered.

 5.2.1 Number of Messages:

Theorem(1) : assume that we have N number of nodes in three

dimensional torus networks. Then, leader election algorithm with the

existence of one link failure needs O (N) messages to complete.

Proof: Number of messages is computed for each phase. Then, add

the results to get the total number overall the algorithm, proof is for

simple case and worst case, as follows:

www.manaraa.com

68

1. Simple Case:

 Phase One: Each node receives one message except the last two

nodes, they receive one more message for each node, when they

send the last message before receiving from inverse direction. After

inform messages are sent from nodes in line (x,0,0) through Y axis

to inform nodes in (x,y,0) So, the number of messages needed to

complete phase one is in the following two formula raw message

(rawmsg) and 2d messge(2dmsg):

 Rawmsg = X +2

(1)

 2dmsg = X (Y+2)

 (2)

Phase Two: XY candidate nodes start the election by sending

election messages through links labeled 2. In each step from one to

Z the algorithm needs XY messages. Same number of messages is

required for acknowledgments. XY messages are needed to inform

the first 2D torus about columns-result. This formulated as in the

following formula3d message(3dmsg):

 2XY 2XYZ XY)(2)](2[
1

0






Z

i

XY (3)

Phase three: Nodes (X, y, 0) needs Y election messages through

link 4 to start the phase, and waits for acknowledgement. Eventually,

the result reaches to nodes in row labeled (0,y,0) after this number

of messages:

 




1

0

2
X

i

Y = 2 XY . (4)

www.manaraa.com

69

Phase Four: Node (0, 0, Z) starts leader election in Z axes, each

node, along Z axes, sends election message and receives

acknowledgement. The result reaches to node (0, 0, 0) after this

number of messages:

 




1

0

2
Z

i

= 2 Z

(5)

Phase five: Node (0, 0, 0) starts row broadcast by sending leader

messages through links 1 and 4. As shown in phase 1 and 2,X+2

and X (Y+2) messages are needed for row and depth and XY

(Z+2) for columns. Number of messages needed to inform the

leader message to all nodes is:

 (X+2) + X *(Y+2) + XY *(Z+2) =

 XYZ +3XY +3X + 2 (6)

To cover the link failure in phases (three, four, five), the algorithm

needs three messages. So, the total number of messages overall

the algorithm is computed by add messages in the equations (1 to

6) as in Equation 7:

Total message= X +2 + X (Y+2) +2(XYZ) +2 XY +2 Z + XYZ +3XY

+3X + 2 +3 =

= 3XYZ+6XY+6X+2Z+7 (7)

When X=Y =Z = 3 N then XYZ =N , so the total messages by using

N is expressed in Formula 8:

Totalmessage=3N+6 3 2N +8 3 N +7=O(N)messages (8)

Worst Case

 Phase one: all nodes detect the leader failure simultaneously. To

start the algorithm each node sends two messages in links 1 and 4

www.manaraa.com

71

 and sends two messages in links 3 and 6. Phase one is finished

after two steps because all nodes state transform to candidate. The

number of messages all phase one message (ph1msg) is equal:

 Pha1msg= 2XYZ + 2XYZ messages (9)

Phase Two: All nodes start phase three simultaneously by sending

election messages through link 2. All nodes also send

acknowledgement messages. There for step1 needs 2XYZ

messages. Algorithm needs 2XY for each step from 2 to Z. To send

the result to the first 2D algorithm needs 2XY. The number of

messages needed in this phase is in formula 11:

2XYZ+


Z

I

XY
2

2 + 2XY = 4XYZ + 2XY (10)

Phases (3, 4 and 5) are the same as in the simple case so, , the

total number of messages overall the algorithm in the worst case is

computed by add messages in formulas (9,10, 4, 5, 6) besides 9

messages to cover the link failure as in formula 12:

2XYZ + 2XYZ + 4XYZ +2XY + 2Z + XYZ +3XY +3X + 2 + 9 =

 9XYZ + 5XY +3X + 2Z + 11 (11)

When X= Y = Z = 3 N the previous equation equals:

 9N + 5 3 2N + 5 3 N + 11 = O(N) messages (12)

The results in 8 and 12 proof theorem (1)

5.2.2 Time Steps.

Theorem (2): Assume that we have N number of nodes in three

dimensional torus networks. Then, leader election algorithm with the

existence of one link failure needs
3 NO time steps to complete.

Proof: Number of time steps is computed for each phase. Then add

these numbers to get the total number of time steps overall the

algorithm. We apply the computations at the simple case and then

at the worst case as follow:

www.manaraa.com

71

1. Simple Case.

Phase One.

Step 1: One node detects leader failure and sends Leader-failure

message to the right and left neighbors.

 Steps 2 to X/2 + 1: In each step, nodes that received leader-failure

messages forward the message through the inverse link, and sends

acknowledgement message. Number of time steps is equal to:

X/2+1 steps. The same way but through Y rows it needs Y/2 + 1

steps, so phase one needs:

 2dmessag= (X/2+1) + (Y/2 + 1) (13)

Phase Two: In step one all candidate nodes send election

messages to the upper neighbors through links labeled 2 (Up).

Step 2 to step Z: nodes receive the election messages make the

comparison and pass election messages up with the greater ID.

After Z -1 steps the result of the column leader is found in phase

three initiator node. These nodes need another step to send column

results to nodes with coordinators (x,y,0) . So the algorithm needs

(Z+1) steps to complete phase 2 as in Equation 6:

 1+Z-1+1 = Z+1 (14)

Phase three: Nodes with coordinators (x, Y, 0) start election

process in step one by sending the greater ID through link 6 (back).

This process continues as follow:

Step 2 to step Y: Any node that receives the election message,

makes the comparison and sends election message with greater ID

to the back neighbor. Phase four is terminated when nodes (x, 0, 0)

receive the election message from link 3 (front). Because the

election will be in the rows of X, and the result of every row will be

in the y axes so this phase needs:

www.manaraa.com

72

 Colymsg= Y steps (15)

Phase Four: Node (X, 0, 0) starts election process in step one by

sending the greater ID through link 4 (left). This process continues

as follow:

Step 2 to step X: Any node that receives the election message,

makes the comparison and sends election message with greater ID

to the left neighbor. Phase four is terminated when node (0, 0, 0)

receives the election message from link 1 (right). This process

needs X steps.

To tolerate the probability of the presence of one link failure in phase

3, 4 and 5 the algorithm needs 3 steps as explained in the algorithm

description. So the total steps for this phase:

Rawxmsg= X+ 3 steps (16)

Phase five: Since node(0,0) has the new leader information and it

sends this information in two directions (left and right), the row

broadcasting is terminated after X/2 steps and extra step may occur

if X is odd. Same idea for depth broadcasting (Y/2+1) steps and

column broadcasting (Z/2+1) steps. So, the total number for this

phase is:

Totalmsg= X/2+1+ Y/2+1+ Z/2+1 steps (17)

The total time steps overall the algorithm in simple case is the

summation of time steps in (13 to 17) is as in Equation 19:

X/2 + 1+Y/2+1+ Z+1+Y +X+3 +X/2+1+ Y/2 + 1 + Z/2 +1 =

 2X+2Y+ (3 *Z) /2 +9 Time steps

(18)

When X= Y = Z = 3 N , the number of time steps can be expressed

as in Equation 21:

)(7
2

11 33 NON  (19)

www.manaraa.com

73

 2. Worst case

 In the worst case when all nodes detect the leader failure

simultaneously, the time steps will be as follow.

 Phase one: all nodes start the algorithm by sending leader-failure

message. All nodes states become candidate after one time step.

After one step is terminated and all nodes start phase 2. Therefore,

phase one needs two time steps to complete.

Phase Two: in step one, all nodes start phase two. In step two, one

node in each column continues the election, while all other nodes in

the same column stop the process. So, number of time steps in this

phase is equal Z, and need one step for column result message.

Thus the total for phases 1,2 and 3 is:

 Totalmsg= Z+3 steps (20)

Phases (3, 4 and 5) are the same as in the simple case. The total

time steps overall the algorithm in worst case is the summation

equations (20, 17, 18, and 19) as follow:

1+ 1+Z+1 +Y+X + 3 +X/2+1 + Y/2 + 1+ Z/2+1 =

 3/2X + 3/2Y + 3/2Z +9 Time steps (21)

When X= Y = Z = 3 N , the number of time steps can be expressed

as in Equation 15:

 9
2

9 3 N = 3 NO steps (22)

The results in 21 and 24 proof theorem (2)

5.3 Leader Election in 3D Torus Networks with Two Links

Failure Analyses.

 In this section the second proposed algorithm is evaluated and its

performance is computed mathematically as for the first one in the

www.manaraa.com

74

 previous section. Section 5.3.1 analyzes performance in from the

number of messages perspective. On the other hand section 5.3.2

shows the analyses from time steps perspective. In both analyses

simple case to the worst case when the leader failure is detected by

a subset of nodes reached to N-1 nodes are considered.

5.3.1 Number of Messages:

Theorem (3): assume that we have N number of nodes in three

dimensional torus networks. Then, leader election algorithm with the

existence of two links failure needs O (N) messages to complete.

Proof: Number of messages is computed for each phase. Then, add

the results to get the total number overall the algorithm, proof is for

simple case and worst case, as follow:

1. Simple Case.

 Phase One: Each node receives one message except the last two

nodes they receive one more message for each node, when they

send the last message before receiving from inverse direction X +2.

After that inform messages are sent from nodes in line (x,0,0)

through Y axis to inform nodes in (x,y,0) . So the number of

messages needed is X *(Y+2) to recover two links failure the

algorithm needs 2 detours or 12 messages (messages and

acknowledgements) and these messages added one time overall

the algorithm so it added at the end of this case , therefore the

number of messages needed to complete phase one is in the

following two formula (Phase1msg):

 Phase1msg = (X +2)+ (X (Y+2)) (23)

Phase Two: X*Y candidate nodes start the election by sending

election messages through links labeled 2. In each step from one to

Z the algorithm needs X*Y messages. Same number of messages

www.manaraa.com

75

 is required for acknowledgments. X*Y messages are needed to

inform the first 2D torus about columns-result. To recover two links

failure algorithm needs 6 more messages but this number is added

in phase 1 and we proposed the number of links failure is 2 overall

the algorithm. The number of messages needed to complete phase

2 is formulated as in the following formula:

 2XY 2XYZ Y)*X(2)]*(2[
1

0






Z

i

YX (24)

Phase three: Nodes (X, y, 0) needs Y election messages through

link 4 to start the phase, and waits for acknowledgement. Eventually,

the result reaches to nodes in row labeled (0,y,0) after this number

of messages:






1

0

2
X

i

Y = 2 XY . (25)

Phase Four: Node (0, 0, Z) starts leader election in Z axes, each

node, along Z axes, sends election message and receives

acknowledgement. The result reaches to node (0, 0, 0) after this

number of messages:

 




1

0

2
Z

i

= 2 Z (26)

Phase five: Node (0, 0, 0) starts row broadcast by sending leader

messages through links 1 and 4. As shown in phase 1 and 2, X+2

and X *(Y+2) messages are needed for row and depth and XY

*(Z+2) for columns. Number of messages needed to inform the

leader message to all nodes is:

(X+2) + X *(Y+2) + XY *(Z+2) = XYZ +3XY +3X + 2 (27)

To cover the links failure in phases (one, two, three, four, five), the

algorithm needs six messages. So, the total number of messages

www.manaraa.com

76

 overall the algorithm is computed by add messages in the

equations (23 to 27) as in Equation 7:

X +2 + X *(Y+2) +2(XYZ) +2 XY +2 Z + XYZ +3XY +3X + 2 +12 =

 3XYZ + 6XY + 6X + 2Z + 19 (28)

When X=Y =Z = 3 N then XYZ =N , so the total messages by using

N is expressed in Formula 8:

3N + 6 3 2N + 8 3 N + 19 = O (N) messages (29)

Worst Case.

Phase one: all nodes detect the leader failure simultaneously. To

start the algorithm each node sends two messages in links 1 and 4

and sends two messages in links 3 and 6. Phase one is finished

after two steps because all nodes state transform to candidate. The

number of messages (phsmsg) is equal:

Phs1msg= 2XYZ + 2XYZ messages (30)

Phase Two: All nodes start phase three simultaneously by sending

election messages through link 2. All nodes also send

acknowledgement messages. There for step1 needs 2XYZ

messages. Algorithm needs 2XY for each step from 2 to Z. To send

the result to the first2D algorithm needs 2XY.The number of

message needed in this phase is in formula 30:

2XYZ+


Z

I

XY
2

2 +2XY = 4XYZ +2XY (31)

Phases (3, 4 and 5) are the same as in the simple case so, the total

number of messages overall the algorithm in the worst case is

computed by adding messages in formulas (30, 31, 25, 26, 27)

besides 12 messages to cover the links failure as in formula 12:

2XYZ + 2XYZ + 4XYZ +2XY + 2Z + XYZ +3XY +3X + 2 + 12 =

 9XYZ + 5XY +3X + 2Z + 14 (32)

When X= Y = Z = 3 N the previous equation equals:

www.manaraa.com

77

 9N + 5 3 2N + 5 3 N + 14 = O(N) messages (33)

The results in 29 and 33 proof theorem (3)

5.3.2 Time Steps.

Theorem (4): Assume that we have N number of nodes in three

dimensional torus networks. Then, leader election algorithm with the

existence of two links failure needs
3 NO time steps to complete.

Proof: Number of time steps is computed for each phase. Then add

these numbers to get the total number of time steps overall the

algorithm. We apply the computations at the simple case and then

at the worst case as follow:

1. Simple Case.

Phase One

Step 1: One node detects leader failure and sends Leader-failure

message to the right and left neighbors.

 Steps 2 to X/2 + 1: In each step, nodes that received leader-failure

messages forward the message through the inverse link, and sends

acknowledgement message. Number of time steps is equal to:

X/2+1 step. The same way but through Y rows it needs Y/2 + 1

steps, to deal with two links failure the algorithm needs 6 more

messages for all phases in this case which will be added to the total

after phase 5. So phase one needs (p1timst):

 p1timst = (X/2+1) + (Y/2 + 1) (34)

Phase Two: In step one all candidate nodes send election

messages to the upper neighbors through links labeled 2 (Up).

Step 2 to step Z: nodes receive the election messages make the

comparison and pass election messages up with the greater ID.

After Z -1 steps the result of the column leader is found in phase

three initiator node.

www.manaraa.com

78

These nodes need another step to send column results to nodes

with coordinators (x,y,0) . So the algorithm needs (Z+1) steps to

complete phase 2 as in Equation 6:

 1+Z-1+1 = Z+1 (35)

Phase three: Nodes with coordinators (x, Y, 0) start election

process in step one by sending the greater ID through link 6 (back).

This process continues as follow:

Step 2 to step Y: Any node receive the election message, makes

the comparison and sends election message with greater ID to the

back neighbor. Phase four is terminated when nodes (x, 0, 0)

receive the election message from link 3 (front). This phase needs

(p3timst):

 p3timst = Y steps (36)

Phase Four: Node (X, 0, 0) starts election process in step one by

sending the greater ID through link 4 (left). This process continues

as follow:

Step 2 to step X: Any node receives the election message, makes

the comparison and sends election message with greater ID to the

left neighbor. Phase four is terminated when node (0, 0, 0) receive

the election message from link 1 (right). This process needs X

steps.

To tolerate the probability of the presence of one link failure in phase

3, 4 and 5 the algorithm needs 3 steps as explained in the algorithm

description. So the total steps for this phase (totp4timst):

 totp4timst = X+ 3 steps (37)

Phase five: Since node(0,0) has the new leader information and it

sends this information in two directions (left and right), the row

broadcasting is terminated after X/2 steps and extra step may occur

if X is odd. Same idea for depth broadcasting (Y/2+1) steps and

www.manaraa.com

79

column broadcasting (Z/2+1) steps. So, the total number for this

phase is:

 X/2+1+ Y/2+1+ Z/2+1 steps (38)

The total time steps overall the algorithm in simple case is the

summation of time steps in (34 to 38) besides 6 time steps for two

links failure as in Equation 39:

X/2 + 1+Y/2+1+ Z+1+Y +X+3 +X/2+1+ Y/2 + 1 + Z/2 +1 + 6=

 2X+2Y+ (3 *Z) /2 +15 Time steps

(39)

When X= Y = Z = 3 N , the number of time steps can be expressed

as in Equation 21:

)(13

2
11 33 NON 

 (40)

2. Worst case

 In the worst case, when all nodes detect the leader failure

simultaneously, the time steps will be as follow.

 Phase one: all nodes start the algorithm by sending leader-failure

message. All nodes state become candidate after one time step.

After one step is terminated and all nodes start phase 2. Therefore,

phase one needs two time steps to complete.

Phase Two: in step one, all nodes start phase two. In step two, one

node in each column continues the election, while all other nodes in

the same column stop the process. So, number of time steps in this

phase is equal Z, and need one step for column result message.

Thus the total for phases 1 and 2 (totalp1p2) is:

totalp1p2=Z+3 steps (41)

Phases (3, 4 and 5) are the same as in the simple case.

www.manaraa.com

81

The total time steps overall the algorithm in worst case is the

summation these equations besides 6 time steps to bypass two links

failure as follow:

1+ 1+Z+1 +Y+X + 3 +X/2+1 + Y/2 + 1+ Z/2+1 + 6=

 3/2X + 3/2Y + 3/2Z +15 Time steps

(42)

When X= Y = Z = 3 N , the number of time steps can be expressed

as in Equation 15:

 15
2

9 3 N =
3 NO steps (43)

The results in 43 and 40 proof theorem (4)

5.4. Simulation

To validate the results of the proposed first algorithm, a simulation

is designed. This section explains how to execute the simulation.

One example and analyses will be done.

5.4.1 Programming Language Used.

 Simulation is programmed in Visual basic programming

language. The VB6 is an interpreted language using event

programming. It has many objects, tools, and activeX that give the

programmer the ability to use a user friendly interface.

5.4.2 Algorithm Simulation

 The torus network is represented in dynamic three dimensional

array. Each element in the array represents one node in the

network. A node is designed as an object with several properties

and methods (Appendix A shows the simulation code). Each node

has a buffer to receive messages. The buffer is queue data structure

and can store up to six messages. A node is connected to its

www.manaraa.com

81

Figure 30: 3D Torus simulation main screen.

 neighbors by six links. Distributed processing is applied in the

simulation, so all nodes can send and receive simultaneously. The

simulation uses coded messages to design the election protocol.

5.4.2.1 How to Use This Simulator?
 When the simulator starts, a user needs to set up the network

configuration. This can be done by selecting configuration from the

first menu. Users use the first menu to set up the configuration for

the current attempt as shown in Figure-30. It is a must to enter

number X such that X represent the number of nodes in X axes and

the number Y when Y is the number of nodes in Y axes and number

Z for Z axes. These numbers can be changed any time from the

setting menu using Configuration sub menu.

The configuration screen as in Figure-31 enables the user to enter

the following information:

Network size: using X , Y and Z dimension.

Link failure: by selecting one node coordinates and the direction for

the failed link.

www.manaraa.com

82

Figure 31: Configurations Screen

 Numb

er of nodes that detect the leader failure.

The path of the folder to save two files: one for the messages used

throughout the simulation and another for buffers contents in any

Selected step.

 The main screen is shown in Figure-30. It shows the simulation

environment which can be described as follows:

1. Menus Bar: which contains the following menus:

Setting menu: To establish the configuration for the simulation. Two

choices in this menu:

Set configuration: reset or establish the nodes configuration. This is

done automatically through the default options, and user can

change this default setting.

Exit: To end the simulation.

www.manaraa.com

83

Store View Menu: To store the messages and node status through

the execution of the algorithm.

Run Menu: To start and stop the simulation.

List box: shows for all messages (time, source, message and

destination).

 Buffers list: shows the contents of all buffers in 3D torus nodes.

This list is invisible by default, user can show it when press on buffer

command.

Number of messages: shows the number of messages during the

simulation and total number of messages as the execution is

finished.

Time Steps: counter to compute the current time step which the

algorithm reaches and the total time steps when the execution is

finished.

Command Buttons: The following commands are found on the main

screen:

Start Auto: This Command completes the election algorithm by

executing all steps and gives the final results.

Step by Step: This command runs the simulation step by step. Each

step shows what happens in one time step.

Display nodes status : When pressed on this command, the status

for all nodes is shown in a new screen.

Clear Screen: To clear the main screen .

Exit: To end the simulation and go out from the program.

5.4.2.2. Example.

 In this sub section, an example to show the execution of the

election algorithm in (3 X 3 X 3) torus network. When the program

www.manaraa.com

84

starts, a user assigns network configuration as in figure-31. Results

and messages as in figure 32. to explain the steps and messages,

log file is displayed in Table 2.

Table-1 contains the details of all steps during the algorithm. The number of

messages in the table is 139 messages and the number of time steps is 13.

Time Source Message Destination

1 1 , 2 , 2 send 0101000000000000010202 to 2,2

, 2"

"1 1 , 2 , 2 send 0101000000000000010202 to 0,2

, 2"

"1 1 , 2 , 2 send 0101000000000000010202 to 1,0

, 2"

Table 1: Messages sent in the example 1 with sources and destinations and steps

Figure 32: Example 1 execution

www.manaraa.com

85

"1 1 , 2 , 2 send 0101000000000000010202 to 1,1

, 2"

"1 1 , 2 , 2 send 1201000014010202010202 to 1 ,

2 , 0"

"2 0 , 2 , 2 send 0101000000000000010202 to 2,2

, 2"

"2 0 , 2 , 2 send 0101000000000000010202 to 0,0

, 2"

"2 0 , 2 , 2 send 0101000000000000010202 to 0,1

, 2"

"2 0 , 2 , 2 send 1201000002000202000202 to 0 ,

2 , 0"

"2 1 , 0 , 2 send 0101000000000000010202 to 2,0

, 2"

"2 1 , 0 , 2 send 0101000000000000010202 to 1,1

, 2"

"2 1 , 0 , 2 send 1201000024010002010002 to 1 ,

0 , 0"

"2 1 , 1 , 2 send 0101000000000000010202 to 2,1

, 2"

"2 1 , 1 , 2 send 1201000023010102010102 to 1 ,

1 , 0"

"2 1 , 2 , 0 send ack to 1, , 2 , 2"

"2 1 , 2 , 0 send 1202000014010202010202 to 1 ,

2 , 1"

"2 2 , 2 , 2 send 1201000013020202020202 to 2 ,

2 , 0"

"3 0 , 0 , 2 send 1201000016000002000002 to 0 ,

0 , 0"

"3 0 , 1 , 2 send 1201000001000102000102 to 0 ,

1 , 0"

www.manaraa.com

86

"3 0 , 2 , 0 send ack to 0, , 2 , 2"

"3 0 , 2 , 0 send 1202000021000200000202 to 0 ,

2 , 1"

"3 1 , 0 , 0 send ack to 1, , 0 , 2"

"3 1 , 0 , 0 send 1202000024010002010002 to 1 ,

0 , 1"

"3 1 , 1 , 0 send ack to 1, , 1 , 2"

"3 1 , 1 , 0 send 1202000023010102010102 to 1 ,

1 , 1"

"3 1 , 1 , 2 send 1201000023010102010102 to 1 ,

1 , 0"

"3 1 , 2 , 1 send ack to 1, , 2 , 0"

"3 1 , 2 , 1 send 1203000019010201010202 to 1 ,

2 , 2"

"3 2 , 0 , 2 send 1201000012020002020002 to 2 ,

0 , 0"

"3 2 , 1 , 2 send 1201000009020102020102 to 2 ,

1 , 0"

"3 2 , 2 , 0 send ack to 2, , 2 , 2"

"3 2 , 2 , 0 send 1202000013020202020202 to 2 ,

2 , 1"

"3 2 , 2 , 2 send 1201000013020202020202 to 2 ,

2 , 0"

"4 0 , 0 , 0 send ack to 0, , 0 , 2"

"4 0 , 0 , 0 send 1202000016000002000002 to 0 ,

0 , 1"

"4 0 , 1 , 0 send ack to 0, , 1 , 2"

"4 0 , 1 , 0 send 1202000005000100000102 to 0 ,

1 , 1"

"4 0 , 2 , 1 send ack to 0, , 2 , 0"

"4 0 , 2 , 1 send 1203000021000200000202 to 0 ,

2 , 2"

www.manaraa.com

87

"4 1 , 0 , 1 send ack to 1, , 0 , 0"

"4 1 , 0 , 1 send 1203000024010002010002 to 1 ,

0 , 2"

"4 1 , 1 , 0 send ack to 1, , 1 , 2"

"4 1 , 1 , 0 send 1202000023010102010102 to 1 ,

1 , 1"

"4 1 , 1 , 1 send ack to 1, , 1 , 0"

"4 1 , 1 , 1 send 1203000023010102010102 to 1 ,

1 , 2"

"4 1 , 2 , 2 send ack to 1, , 2 , 1"

"4 1 , 2 , 2 send 2200000019010201010202 to 1,2

, 0"

"4 2 , 0 , 0 send ack to 2, , 0 , 2"

"4 2 , 0 , 0 send 1202000015020000020002 to 2 ,

0 , 1"

"4 2 , 1 , 0 send ack to 2, , 1 , 2"

"4 2 , 1 , 0 send 1202000025020100020102 to 2 ,

1 , 1"

"4 2 , 2 , 0 send ack to 2, , 2 , 2"

"4 2 , 2 , 0 send 1202000013020202020202 to 2 ,

2 , 1"

"4 2 , 2 , 1 send ack to 2, , 2 , 0"

"4 2 , 2 , 1 send 1203000022020201020202 to 2 ,

2 , 2"

"5 0 , 0 , 1 send ack to 0, , 0 , 0"

"5 0 , 0 , 1 send 1203000026000001000002 to 0 ,

0 , 2"

"5 0 , 1 , 1 send ack to 0, , 1 , 0"

"5 0 , 1 , 1 send 1203000007000101000102 to 0 ,

1 , 2"

"5 0 , 2 , 2 send ack to 0, , 2 , 1"

www.manaraa.com

88

"5 0 , 2 , 2 send 2200000021000200000202 to 0,2

, 0"

"5 1 , 0 , 2 send ack to 1, , 0 , 1"

"5 1 , 0 , 2 send 2200000024010002010002 to 1,0

, 0"

"5 1 , 1 , 1 send ack to 1, , 1 , 0"

"5 1 , 1 , 1 send 1203000023010102010102 to 1 ,

1 , 2"

"5 1 , 1 , 2 send ack to 1, , 1 , 1"

"5 1 , 1 , 2 send 2200000023010102010102 to 1,1

, 0"

"5 2 , 0 , 1 send ack to 2, , 0 , 0"

"5 2 , 0 , 1 send 1203000015020000020002 to 2 ,

0 , 2"

"5 2 , 1 , 1 send ack to 2, , 1 , 0"

"5 2 , 1 , 1 send 1203000025020100020102 to 2 ,

1 , 2"

"5 2 , 2 , 1 send ack to 2, , 2 , 0"

"5 2 , 2 , 1 send 1203000022020201020202 to 2 ,

2 , 2"

"5 2 , 2 , 2 send ack to 2, , 2 , 1"

"5 2 , 2 , 2 send 2200000022020201020202 to 2,2

, 0"

"6 0 , 0 , 2 send ack to 0, , 0 , 1"

"6 0 , 0 , 2 send 2200000026000001000002 to 0,0

, 0"

"6 0 , 1 , 2 send ack to 0, , 1 , 1"

"6 0 , 1 , 2 send 2200000007000101000102 to 0,1

, 0"

"6 0 , 2 , 0 send 3201000021000200000202 to 1,2

, 0"

www.manaraa.com

89

"6 1 , 1 , 2 send ack to 1, , 1 , 1"

"6 1 , 1 , 2 send 2200000023010102010102 to 1,1

, 0"

"6 2 , 0 , 2 send ack to 2, , 0 , 1"

"6 2 , 0 , 2 send 2200000015020000020002 to 2,0

, 0"

"6 2 , 1 , 2 send ack to 2, , 1 , 1"

"6 2 , 1 , 2 send 2200000025020100020102 to 2,1

, 0"

"6 2 , 2 , 2 send ack to 2, , 2 , 1"

"6 2 , 2 , 2 send 2200000022020201020202 to 2,2

, 0"

"7 0 , 0 , 0 send 3201000026000001000002 to 1,0

, 0"

"7 0 , 1 , 0 send 3201000007000101000102 to 1,1

, 0"

"7 1 , 2 , 0 send ack to 0,2 , 0"

"7 1 , 2 , 0 send 3201000021000200000202 to 2,2

, 0"

"8 1 , 0 , 0 send ack to 0,0 , 0"

"8 1 , 0 , 0 send 3201000026000001000002 to 2,0

, 0"

"8 1 , 1 , 0 send ack to 0,1 , 0"

"8 1 , 1 , 0 send 3201000023010102000102 to 2,1

, 0"

"8 2 , 2 , 0 send ack to 1,2 , 0"

"8 2 , 2 , 0 send 3201000022020201000202 to 0,2

, 0"

"9 0 , 2 , 0 send ack to 2,2 , 0"

"9 2 , 0 , 0 send ack to 1,0 , 0"

"9 2 , 0 , 0 send 3201000026000001000002 to 0,0

, 0"

www.manaraa.com

91

"9 2 , 1 , 0 send ack to 1,1 , 0"

"9 2 , 1 , 0 send 3201000025020100000102 to 0,1

, 0"

"10 0 , 0 , 0 send ack to 2,0 , 0"

"10 0 , 0 , 0 send 4400000026000001000002 to 0,1

, 0"

"10 0 , 0 , 0 send ack to 0,2 , 0"

"10 0 , 0 , 0 send 5500000026000001000002 to 1,0

, 0"

"10 0 , 0 , 0 send 5500000026000001000002 to 2,0

, 0"

"10 0 , 0 , 0 send 5500000026000001000002 to 1,0

, 0"

"10 0 , 0 , 0 send 5500000026000001000002 to 2,0

, 0"

"10 0 , 0 , 0 send 5500000026000001000002 to 0,1

, 0"

"10 0 , 0 , 0 send 5500000026000001000002 to 0,2

, 0"

"10 0 , 0 , 0 send 5500000026000001000002 to 0

, 0 , 1"

"10 0 , 0 , 0 send 5500000026000001000002 to 0,

, 0 , 2"

"10 0 , 1 , 0 send ack to 2,1 , 0"

"11 0 , 0 , 1 send 5500000026000001000002 to 1,0

, 1"

"11 0 , 0 , 1 send 5500000026000001000002 to 2,0

, 1"

"11 0 , 0 , 1 send 5500000026000001000002 to 0,1

, 1"

www.manaraa.com

91

"11 0 , 0 , 1 send 5500000026000001000002 to 0,2

, 1"

"11 0 , 0 , 2 send 5500000026000001000002 to 1,0

, 2"

"11 0 , 0 , 2 send 5500000026000001000002 to 2,0

, 2"

"11 0 , 0 , 2 send 5500000026000001000002 to 0,1

, 2"

"11 0 , 0 , 2 send 5500000026000001000002 to 0,2

, 2"

"11 0 , 1 , 0 send ack to 0,0 , 0"

"11 0 , 1 , 0 send 4400000026000001000002 to 0,2

, 0"

"11 0 , 1 , 0 send 5500000026000001000002 to 1,1

, 0"

"11 0 , 1 , 0 send 5500000026000001000002 to 2,1

, 0"

"11 0 , 2 , 0 send 5500000026000001000002 to 1,2

, 0"

"11 0 , 2 , 0 send 5500000026000001000002 to 2,2

, 0"

"12 0 , 1 , 1 send 5500000026000001000002 to 1,1

, 1"

"12 0 , 1 , 1 send 5500000026000001000002 to 2,1

, 1"

"12 0 , 1 , 2 send 5500000026000001000002 to 1,1

, 2"

"12 0 , 1 , 2 send 5500000026000001000002 to 2,1

, 2"

"12 0 , 2 , 0 send ack to 0,1 , 0"

www.manaraa.com

92

"12 0 , 2 , 1 send 5500000026000001000002 to 1,2

, 1"

"12 0 , 2 , 1 send 5500000026000001000002 to 2,2

, 1"

"12 0 , 2 , 1 send 5500000026000001000002 to 0,

, 2 , 0"

"12 0 , 2 , 2 send 5500000026000001000002 to 1,2

, 2"

"12 0 , 2 , 2 send 5500000026000001000002 to 2,2

, 2"

5.3.2.3 Simulation Survey:
In this section, we explain different scenario for the simulation. For each

scenario we

Figure 33 : Nodes Status After finish the algorithm

www.manaraa.com

93

 5.4.2.3 In this sub section we explain different scenarios fore the

simulation for each scenario we use different inputs to the simulation. The

scenarios uses 3D torus with size equal (3 X 3 X 3) nodes with different node

numbers that detect the leader failure:

State 1: Table-2 summarizes the inputs and the results when the simulation

was executed using torus(3 X 3 X 3). The changes will be in number of node

that detects the leader failure and their positions.

 The first column lists trial number. Column two contains number of nodes that

detect leader failure, column three lists these nodes, and column 4 and 5

contain simulation results (number of messages and time steps). Three trails

were recorded as in Table (2).

Table 2: Simulation inputs and results for different trials applied on torus (3X3)

trial
Nodes detect failure

Messages time steps
Number nodes

1 1 (2,1,0) 75 14

2 2 (0,1,2),(1,2,1) 81 16

3 3 (0,0,2),(1,2,0),(2,1,1),(1,0,1),(2,0,2) 83 15

 Table-2 shows that the number of messages increases as the number of nodes

that detect leader failure increases. The number of time steps vibrates through

small changes in the number of these nodes and it is almost fixed in the large

numbers.

www.manaraa.com

94

Chapter 6
Conclusion and Future Work

6.1 Introduction.

 This work presents two distributed solutions to the leader

failure problem in 3D torus networks. The first solution is a

distributed algorithm to elect a new leader in 3D torus networks with

minimum number of messages and time steps with the presence of

one link failure. The second solution solve more complicated

problem when the leader failure is in a network with two links failure.

This chapter concludes the dissertation and presents the results for

each algorithm. The last section presents future work for

researchers in leader election algorithms.

6.2 Results.

In this work, complexity analysis was used to evaluate performance

for the proposed algorithm. The number of messages and time steps

are the main factors for performance evaluation. The total number

of messages and the total time steps were founded for the proposed

algorithm. These totals were translated to big O notation to express

the complexity.

6.2.1 Results of the First Proposed Algorithm.

 The first algorithm consists of five phases. Phase one is initiated

when one or more nodes detects leader failure. This node(s) informs

other nodes in the same row about leader failure to change its state

to candidate; nodes in candidate state inform 2D torus about the

failure. In phase two, nodes aware of leader failure start election

process throughout their columns. In phase three, another election

is applied on the 2D torus to obtain the new leader information in

one row.

www.manaraa.com

95

 In phase four leader election is applied to this row to get new leader

information in one node. Last phase, broadcasts one to all is applied

to disseminate the new leader information to all nodes. Proposed

algorithm considered the probability of link failure in all phases.

 Algorithm performance was evaluated by calculating the

number of messages and time steps overall the algorithm. In a

network of N nodes connected by a three dimensional torus network

(X,Y,Z), the performance is evaluated in simple case, when leader

failure is detected by one node and In the worst case, when leader

failure is detected by (N-1) nodes. For all cases The number of

messages is O(N) in 3 NO steps.

6.2.2 Results of the Second Proposed Algorithm.

 The main idea in the second algorithm is how to complete the leader

election algorithm despite the existing of two links failure. Second

algorithm almost has the same structure as in the first one; it has

five phase and same steps in each phase. But the algorithm use

detours way to bypass the links failure. This way uses the table-3

which bypass the link failure even if it is in detour itself.

 Second algorithm performance was also evaluated by calculating

the number of messages and time steps overall the algorithm. The

result is the same in complexity as in algorithm one despite the

Det # Link failure Direction Detour Routing

1 + Z +X(RIGHT),+Z(UP),-X(LEFT)

2 +y +X(RIGHT),+y(FORWORD),-X(LEFT)

3 +x +Y(FORWORD), +X (RIGHT),-Y(BACKWORD)

4 - Z +X(RIGHT),-Z(UP),-X(LEFT)

5 -y +X(RIGHT),-y(FORWORD),-X(LEFT)

6 -x +Y(FORWORD), -X (RIGHT),-Y(BACKWORD)

Table 2: Link failure solution by detours

www.manaraa.com

96

differences in intermediate steps and messages. For all cases the

number of messages is O(N) in 3 NO steps.

The algorithm is applied by Simulation model which confirm most of

mathematical results. Simulation program prove the increasing in

messages as the number of nodes that detect leader failure

increase.

6.3 Future Works.

Several possible extensions to improve the work proposed here:

- Design an algorithm to solve the leader failure in meshes networks

with the presence of link failure.

- Design an algorithm to solve leader failure in hyper mesh

Topology, when the ID is not distinguished

- Apply election algorithm meshes and other topologies with

wireless communications environment

www.manaraa.com

97

References
Abu-Amara, H., & Lokre, J. (1994). Election in Asynchronous

Complete Networks with Intermittent Link Failures, IEEE

Transactions on Computers, Vol. 34 No. 7, pp. 778-788.

Afek, Y, & Gafni, E. (1991) An efficient Technique For End –to-

End Communication. Proceedings of the 11th ACM Symposium

on Principles of Distributed Computing.

 Akbar B., Mohammed. E., & Mahdi. E. (2006). mprovement of

Election Algorithm in Distributed Systems Base on Ring

Algorithm, Symposium Proceedings Volume II Computer Science

& Electronics Engineering, European University of Lefke, North

Cyprus, PP. 497-501,.

 Al Faisal, F., Rahman M., (2009), Symmetric Tori connected

Torus Network, ,ieee, Computers and Information Technology,

12th International Conference on

Ali, R., Lor, S.; Benouaer, R., Rio, M.,(2009), Cooperative Leader

Election Algorithm for Master/Slave Mobile Ad Hoc Networks,

Wireless Days, 2009 2nd IFIP IEEE pp. 1 – 5.

Alvarado-Magana, J.P.; Fernandez-Zepeda, J.A.,(2007)

 Average Execution Time Analysis of a Self-stabilizing Leader

Election Algorithm,prallel and Distributed Processing Symposium,

2007. International , IEEE International, pp.1 – 7

Andot, E.; Ono, H.; Sadakane, K.; Yamashita, M.(2008)The Space

Complexity of the Leader Election in Anonymous Networks,

IEEE International Symposium on pp.1 – 8.

Antonoiu, G. and Srimani, K.,(1996) ," A Self-Stabilizing Leader

Election Algorithm for Tree Graphs", Journal of Parallel and

Distributed ,System vol. 34, Issue 2 pp.227 – 232

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5446257
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5446257
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4203121
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4203121
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4203121

www.manaraa.com

98

Bagchi, S.; Das, P.(2005) Round-2 Randomized Leader Election

algorithm and Latency for MDVM System, Proceedings of the

International Conference on Next Generation Web Services

Practices.pages

 Barth, D. and Berthom´e P.(2004) (Periodic Gossiping in

Commuted Networks, Theory Comput. Systems , Springer-Verlag

,New York, September 2004, Volume 37, Issue 5, pp. 559-584

Brassard, G., Brately P. (1996). "Fundamental of Algorithmic" ,

Prentice-Hall Publishers ,USA.

 Cámara, J.M.; Moretó, M.; Vallejo, E.; Beivide, R.; Miguel-Alonso,

J.; Martínez, C.; Navaridas, J.(2010), mixed-radix Twisted torus

interconnection networks,ieee,journal, Volume : 21 , Issue: 12 ,

pp.1765 – 1778.

Castillo M., Fariña F., Córdoba A., and Villadango J. s.(2007) A

modified O(n) leader election algorithm for complete networks.

15th Euromicro Conference on Parallel, Distributed and Network-

Based Processing), Naples, Italy. Conference Proceedings,

pp.189-199,ieee conference.

 Choo H., Yoo S., Youn H. , (2000).Processor Scheduling and

Allocation for 3D Torus Multicomputer Systems, ,ieee Journals

& Magazines,volume 11 issu 5, pp. 475-484.

 Conference Publications, pp.174-179.

Coulouris, G. ,Dollimore, J. And kindberg, T.,(2005). "Distributed

Systems Design and Concept, Addison- Wesley Publisher, USA.

Culler, E. Singh, P. and Gupta, A. (1999) Parallel Computer

Architecture A Hardware/Software Approach,Amesterdam,

Morgan Kaufmann Publisher, Inc,.

http://rd.springer.com/journal/224/37/5/page/1
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5611473
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hyunseung%20Choo.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Seong-Moo%20Yoo.QT.&newsearch=partialPref

www.manaraa.com

99

Dallys W., And Towels, B.,(2010) .Principles and Practices of

Interconnection Networks, Amsterdam ,Morgan Kaufmann.

David f .robenson, Philip k., mckinley ,(1995)optimal multicasting

communication in whormhole -routing torus network,ieee ,vol,

6 no 10 October PP. 1029-1042.

 Derhab, A.; Badache, N.,(2008),A Self-Stabilizing Leader

Election Algorithm inHighly Dynamic Ad Hoc Mobile Networks

,ieee transactions on parallel and distributed systems,Ieee vol. 19,

NO. 7, PP. 926 – 939.

 Duato, J. Yalamanchili, S. and Ni, L. , (1997) Interconnection

Networks an Engineering Approach, California,IEEE Computer

Society press,

 Fredrickson, N. and Lynch , N., (1987). "Election a Leader in

Asynchronous Ring". Journal of the ACM, Vol.34, PP 98-115.

 Gu Q..,(2000),Interconnection Networks, available. On line

http://www.cs.sfu.ca/CourseCentral/765/qgu/Notes/note3.pdf.

 Gupta P. ,Algorithms for routing lookups and packet

classiffication, A dissert submitted to the department of computer

and science of Stanford university for the degree of doctor

pholosophy december 2000.

Heutelbeck, D.; Hemmje, M.,(2006) Distributed Leader Election

in P2P Systems for Dynamic Sets, Proceedings of the 7th

International Conference on Mobile Data Management ,IEEE, PP.

2-29.

 Ingram, R.; Shields, P.; Walter, J.E.; Welch, J.L, (2009),An

Asynchronous Leader Election Algorithm for Dynamic

Networks ,IEEE journal, p 1- 12 Conference Publications.

www.manaraa.com

111

Janson S., Lavault C. Louchard., G., (2008), Convergence of

Some Leader Election algorithms, Discrete Mathematics and

Theoretical Computer Science journal , vol. 10 PP. 171-196

 Kumar, V. , Grama, A. , Gupta, A. and Karypis G.,

(2003).Introduction to Parallel Computing, The Benjamin

Community Publishing Company, Inc, Redwood City, California.

 Kutyłowski1 M; and Rutkowski1 W., (2003)Adversary Immune

Leader Election in Ad Hoc RadioNetworks,springers, Vol. 2832,

PP. 397-408.

 Lavault, C.; Marckert, J. F.; Ravelomanana, V.,(2003) Quasi-

Optimal Leader Election Algorithms in Radio Networkswith

Log-logarithmic Awake Time Slots, IEEE, PP. 1113 - 1119 vol.2.

Min G., ould-khaoua M.,Communication Delay in Wormhole-

Switched Tori Networks under Bursty Workload, The Journal of

Supercomputing, 26, PP. 77–94, 2003, Kluwer Academic

Publishers. Manufactured in the Netherlands.

 Mirakhorli, M.; Sharifloo, A.A.; Abbaspour, M, (2007).A Novel

Method for Leader Election Algorithm ,.Computer and

Information Technology, 2007. 7th IEEE International Conference

on, PP.: 452 – 456.

 Mirakhorli, M.; Sharifloo, A.A.; Abbaspour, M,(2007) A Novel

Method for Leader Election Algorithm , 7th IEEE International

Conference on PP. 452 – 456.

Molina G. H, (1982).Elections in A Distributed Computing

systems, IEEE Transactions on Computers, Vol. 31 Jan 1982, pp.

48-59.

 Quinn J., Parallel Computing Theory and Practice, New York

McGraw-HILL, 1994.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4385040
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4385040
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4385040
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4385040
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4385040

www.manaraa.com

111

Ramanathan M., Krishna ·. Ferrier R., ·. Jagannathan S ·, Gram A.,

Szpankowski W.,(2007 randomize leader election, Springer-

JOURNAL, Volume 19, Numbers 5-6 (2007),P 403-418.

 Rouse M.(2006), mesh-network avilable online:

http://searchnetworking.techtarget.com/definition/ .

Rouse.M.,(2007),network topologies ,avilable online :

searchnetworking.techtarget.com/definition/cross-bar-switch.

 Shirali, M.; Toroghi, A.H.; Vojdani, M.,(2008) Leader election

algorithms: History and novel schemes,IEEE Volume: 1 , PP.

1001 – 1006.

 Singh G, (1996)," Leader Election in the Presence of Link

Failures, IEEE Transactions on Parallel and Distributed Systems,

VOL 7, No 3, pp 76-89.

 Singh G, (1996), Leader Election in the Presence of Link

Failures, IEEE Transactions on Parallel and Distributed Systems,

VOL 7, No 3, pp 76-89.

 Svensson H., and Arts T., (2005), A New Leader Election

Implementation, Erlang’05 September 25, 2005, Tallinn, Estonia.

PP. 35 - 39

Tanenbaum A.,(2003),Computer Networks, 4th Ed New jersey,

Prentice Hall USA.

Tanenbaum, A., (2002). Distributed Systems, Prentice-Hall

International, Inc, New Jersey.

 Tanenbaum, A.,(1995). Distributed Operating Systems,

Prentice-Hall International, Inc, New Jersey,1995.

Vasudevan S. ; Kurose,J. ,And Towsley , D.(2005). Design and

Analysis of a Leader Election Algorithm for Mobile Ad Hoc

Networks, Network Protocols, 2004. ICNP 2004. Proceedings of

the 12th IEEE,International Conference on .

http://www.springerlink.com/content/0178-2770/19/5-6/
https://plus.google.com/#115059452925708684879?rel=author

www.manaraa.com

112

Villadangos,J. Cordoba A., Farina, F., Prieto, M. ,(2005),Efficient

leader election in complete networks, Proceedings of the 13th

Euromicro Conference on Parallel, IEEE, Page(s): 136 – 143.

Xu C., Wang J., Jun Huang Petersen-Twisted-Torus Networks for

Multiprocessor Systems , (2010).Journal of Convergence

Information Technology Volume 5, Number 9. November.

Zargarnataj, M., (2007) New Election Algorithm based on

Assistant in Distributed Systems, Ieee journal page(s): 324 –

331.

 Zhang G., Chen J., Zhang Y., Liu C,(2009) Research of

Asynchronous Leader Election, . 5th International Conference

on,, Page(s): 1 – 4.

Zhenyu xu .and srimani p., (2006). "Self-stabilizing Anonymous

Leader Election in aTree, International Journal of Foundations of

computer science vol.17, No. 2 pp 323-335.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zargarnataj,%20M..QT.&newsearch=partialPref

www.manaraa.com

113

Appendices

Appendix A:

Simulation source code

1. Class Definition

Option Explicit

 Public my_id As Integer

 Public x_pos As Integer

 Public y_pos As Integer

 Public z_pos As Integer

 Public leader_x_pos As Integer

 Public leader_y_pos As Integer

 Public leader_z_pos As Integer

 Public leader_id As Integer

 Public candidate_x_pos As Integer

 Public candidate_y_pos As Integer

 Public candidate_z_pos As Integer

 Public candidate_id As Integer

 Public normal As Boolean

 Public local_phase As Integer

 Public local_step As Integer

 Public phase2done As Boolean

 Public end_after_phase As Boolean

 Public link_failure1 As Boolean

 Public link_failure2 As Boolean

 Public link_failure3 As Boolean

 Public link_failure4 As Boolean

 Public link_failure5 As Boolean

 Public link_failure6 As Boolean

www.manaraa.com

114

Public wait As Boolean

 Public wait_time As Integer

 Public wait_message As String

 Public stored_phase3_message As String

 Public stored_phase4_message As String

 Private Type rec

 message As String * 22

 time As Integer

End Type

 Private buffer(6) As rec

 Const buffer_size = 7

 Private buffer_head As Integer

 Private buffer_tail As Integer

Public Function add(message As String, timer As Integer)

 Form1.Lnumberofmessage.Caption = number_of_message

 If Not isfull Then

 buffer(buffer_tail).message = message

 buffer(buffer_tail).time = timer

 buffer_tail = (buffer_tail + 1) Mod buffer_size

 End If

 End Function

 Public Sub delete()

 If Not isempty() Then buffer_head = (buffer_head + 1) Mod buffer_size

 End Sub

 Public Function isempty() As Boolean

 If buffer_head = buffer_tail Then

 isempty = True

 Else

www.manaraa.com

115

 isempty = False

 End If

 End Function

 Public Function isfull() As Boolean

 If (buffer_tail + 1) Mod (buffer_size) = buffer_head Then

 isfull = True

 Else

 isfull = False

 End If

 End Function

 Public Function read_buffer() As String

 If Not isempty Then

 read_buffer = buffer(buffer_head).message

 delete

 End If

 End Function

Public Function read_btime() As Integer

 If Not isempty Then

 read_btime = buffer(buffer_head).time

 End If

 End Function

 Public Sub show_buffer()

 Dim i%, bh%, bt As Integer

 bh = buffer_head

 bt = buffer_tail

 Do Until bh = bt

 Form1.List2.AddItem (buffer(bh).message & " " & read_btime())

 bh = (bh + 1) Mod buffer_size

Loop

 End Sub

www.manaraa.com

116

2. Module

Public N&, x&, y&, z&

Public d As Integer, sourse_Y_pos$, sourse_X_pos$, sourse_Z_pos$

 Public step As Boolean, message_type$

 Public path$, filename As String

Public leader_x_pos%, leader_y_pos%, leader_z_pos%, time_step As Integer,

number_of_message As Long, ppp As Boolean, phase3inprogress As Boolean,

phase4inprogress As Boolean

Public node() As New vertices

Public Sub send(message$, ByVal tt%, dir%, ByVal a%, ByVal b%, ByVal c%)

 'this sub send the message from the source node to the distination node buffer

 Dim msg

 number_of_message = number_of_message + 1

 Select Case dir

 Case 1

 If Not node(a, b, c).link_failure1 Then ' sned message through link labeled 1

 Call node((a + 1) Mod x, b, c).add(message, tt)

 msg = tt & Space(10) & node(a, b, c).x_pos & " , " & node(a, b, c).y_pos & "

, " & node(a, b, c).z_pos & Space(10) & "send" & Space(10) & message &

Space(10) & "to" & Space(10) & (node(a, b, c).x_pos + 1) Mod x & "," & node(a,

b, c).y_pos & " , " & node(a, b, c).z_pos

 Form1.List1.AddItem (msg) ' show the message in the listbox

 End If

 Case 3

 If Not node(a, b, c).link_failure3 Then ' sned message through link labeled

3

 Call node((a - 1 + x) Mod x, b, c).add(message, tt)

 msg = tt & Space(10) & node(a, b, c).x_pos & " , " & node(a, b, c).y_pos & "

, " & node(a, b, c).z_pos & Space(10) & "send" & Space(10) & message &

Space(10) & "to" & Space(10) & (node(a, b, c).x_pos - 1 + x) Mod x & "," &

node(a, b, c).y_pos & " , " & node(a, b, c).z_pos

www.manaraa.com

117

 Form1.List1.AddItem (msg)

 End If

 Case 2

 If Not node(a, b, c).link_failure2 Then ' sned message through link labeled

2

 Call node(a, (b + 1) Mod y, c).add(message, tt)

 msg = tt & Space(10) & node(a, b, c).x_pos & " , " & node(a, b, c).y_pos & "

, " & node(a, b, c).z_pos & Space(10) & "send" & Space(10) & message &

Space(10) & "to" & Space(10) & (node(a, b, c).x_pos) & "," & (node(a, b,

c).y_pos + 1) Mod y & " , " & node(a, b, c).z_pos

 Form1.List1.AddItem (msg)

 End If

 Case 4

 If Not node(a, b, c).link_failure4 Then ' sned message through link labeled

4

 Call node(a, (b - 1 + y) Mod y, c).add(message, tt)

 msg = tt & Space(10) & node(a, b, c).x_pos & " , " & node(a, b, c).y_pos & "

, " & node(a, b, c).z_pos & Space(10) & "send" & Space(10) & message &

Space(10) & "to" & Space(10) & node(a, b, c).x_pos & "," & (node(a, b, c).y_pos

- 1 + y) Mod y & " , " & node(a, b, c).z_pos

 Form1.List1.AddItem (msg)

 End If

 Case 5

 If Not node(a, b, c).link_failure5 Then ' sned message through link labeled

5

 Call node(a, b, (c + 1) Mod z).add(message, tt)

 msg = tt & Space(10) & node(a, b, c).x_pos & " , " & node(a, b, c).y_pos & "

, " & node(a, b, c).z_pos & Space(10) & "send" & Space(10) & message &

Space(10) & "to" & Space(10) & (node(a, b, c).x_pos) & " , " & node(a, b,

c).y_pos & " , " & (node(a, b, c).z_pos + 1) Mod z

 Form1.List1.AddItem (msg)

 End If

 Case 6

www.manaraa.com

118

 If Not node(a, b, c).link_failure6 Then ' sned message through link labeled

6

 Call node(a, b, (c - 1 + z) Mod z).add(message, tt)

 msg = tt & Space(10) & node(a, b, c).x_pos & " , " & node(a, b, c).y_pos & "

, " & node(a, b, c).z_pos & Space(10) & "send" & Space(10) & message &

Space(10) & "to" & Space(10) & node(a, b, c).x_pos & "," & " , " & node(a, b,

c).y_pos & " , " & (node(a, b, c).z_pos - 1 + z) Mod z

 Form1.List1.AddItem (msg)

 End If

 Case 7 ' sned message to first 2 dimintional torus

 Call node(a, b, 0).add(message, tt)

 msg = tt & Space(10) & node(a, b, c).x_pos & " , " & node(a, b, c).y_pos & "

, " & node(a, b, c).z_pos & Space(10) & "send" & Space(10) & message &

Space(10) & "to" & Space(10) & node(a, b, c).x_pos & "," & node(a, b, c).y_pos

& " , " & 0

 Form1.List1.AddItem (msg)

 End Select

End Sub

www.manaraa.com

119

3. Main Form Code

Option Explicit

Private Sub cmdcls_Click()

 Cls

 time_step = 0

 configration

End Sub

Private Sub CMDExit_Click()

End

End Sub

Private Sub CMDstep_Click()

 If time_step = 0 Then

 Dim ff As Integer

 ff = Val(configfrm.numtxt.Text) 'InputBox("enter the number of process that

detect failure")

 If ff > N Then ff = 1

 leader_failure (ff)

 GoTo 60

 End If

 Timer1.Enabled = True

 step = True

60:

End Sub

Private Sub Nodes_status_Click()

Form3.Cls

Form3.Show

Dim i%, j%, k%

Form3.Print

 Form3.Print Tab(5); " normal"; Tab(13); "leader ID"; Tab(23); "leader_pos";

Tab(35); "l_phase" _

; Tab(45); "l_step"; Tab(55); "my pos"; Tab(65); "my id"; Tab(75); "C_ID";

Tab(85); "C_pos"; Tab(100);

"L_F1L_F2L_F3L_F4L_F5L_F6"

www.manaraa.com

111

Form3.Print Space(10); String(105, "_")

 For i = 0 To x - 1

 For j = 0 To y - 1

 For k = 0 To z - 1

 Form3.Print Tab(5); node(i, j, k).normal;

 Form3.Print Tab(13); node(i, j, k).leader_id;

 Form3.Print Tab(23); node(i, j, k).leader_x_pos;

 Form3.Print Tab(27); node(i, j, k).leader_y_pos;

 Form3.Print Tab(30); node(i, j, k).leader_z_pos;

 Form3.Print Tab(35); node(i, j, k).local_phase;

 Form3.Print Tab(45); node(i, j, k).local_step;

 Form3.Print Tab(55); node(i, j, k).x_pos;

 Form3.Print Tab(58); node(i, j, k).y_pos;

 Form3.Print Tab(61); node(i, j, k).z_pos;

 Form3.Print Tab(65); node(i, j, k).my_id;

 Form3.Print Tab(75); node(i, j, k).candidate_id;

 Form3.Print Tab(85); node(i, j, k).candidate_x_pos;

 Form3.Print Tab(88); node(i, j, k).candidate_y_pos;

 Form3.Print Tab(91); node(i, j, k).candidate_z_pos;

 Form3.Print Tab(100); node(i, j, k).link_failure1;

 Form3.Print Tab(105); node(i, j, k).link_failure2;

 Form3.Print Tab(110); node(i, j, k).link_failure3;

 Form3.Print Tab(115); node(i, j, k).link_failure4;

 Form3.Print Tab(120); node(i, j, k).link_failure5;

 Form3.Print Tab(125); node(i, j, k).link_failure6

 'Form3.Print Tab(105); node(i).phase2done;

 ' Form3.Print Tab(115); node(i).end_after_phase

 Next k

 Next j

 Next i

End Sub

www.manaraa.com

111

Private Sub CStart_Click()

 Dim ff As Integer

30 ff = Val(configfrm.numtxt.Text) 'InputBox("enter the number of process

that detect failure")

 If ff > N Then MsgBox ("rong number tryagain"): GoTo 30

 leader_failure (ff)

 Timer1.Enabled = Not Timer1.Enabled

 step = False

End Sub

Private Sub Cbuffer_Click()

Dim i%, j%, k%, message$, msg$

filename = path & "\hh"

 Open filename For Output As #1

List2.Clear

 List2.Visible = Not List2.Visible

 For i = 0 To x - 1

 For j = 0 To y - 1

 For k = 0 To z - 1

 msg = "node number " & node(i, j, k).x_pos & "," & node(i, j, k).y_pos & "," &

node(i, j, k).z_pos & " " & "BTime"

 List2.AddItem (msg)

 node(i, j, k).show_buffer

 Next k

 Next j

 Next i

 For j = 0 To List2.ListCount - 1

 Write #1, List2.List(j)

www.manaraa.com

112

 Next j

 Close #1

End Sub

Private Sub Exit_Click(Index As Integer)

End

End Sub

Private Sub Form_Load()

path = configfrm.Pathtxt.Text

 configration

 Me.Move (Screen.Width / 2) - (Me.Width / 2), (Screen.Height / 2) - (Me.Height

/ 2)

End Sub

Private Sub LFAILURE_Click(Index As Integer)

 Dim ff As Integer

 ff = Val(configfrm.numtxt.Text)

 If ff > N Then ff = 1

 leader_failure (ff)

End Sub

Private Sub sendmessages_Click(Index As Integer)

Dim i As Integer

filename = path & "\tt"

Open filename For Output As #1 ' open the file to save all messages

For i = 0 To List1.ListCount

Write #1, List1.List(i) ' save the message in the file

Next i

Close #1

End Sub

www.manaraa.com

113

Private Sub setconfigration_Click(Index As Integer)

configfrm.Show

End Sub

Public Sub configration()

 time_step = 0

Randomize

 List1.Clear

 ppp = False

 phase3inprogress = False

 phase4inprogress = False

 step = False

 time_step = 0

 Lnumberofmessage.Caption = ""

 ltimesteps.Caption = ""

 Dim aa%, Link_failure, X1, Y1, Z1, cv%, array1() As Integer, i%, j%, k%, bb%,

r%, flag As Boolean, b As Boolean

 Label4.Caption = 1

 x = Val(configfrm.NODESX.Text)

 y = Val(configfrm.NODESY.Text)

 z = Val(configfrm.NODESZ.Text)

 N = x * y * z

 ReDim node(x, y, z)

 ReDim array1(N)

 For i = 0 To N - 1

 array1(i) = 0

 Next i

www.manaraa.com

114

 For i = 0 To N - 1

 j = -1

 r = Int(((N) * Rnd()) + 1)

 Do Until j = i

 If r = array1(j + 1) Then

 r = Int(((N) * Rnd()) + 1)

 j = -1

 Else

 j = j + 1

 End If

 Loop

 array1(i) = r

 Next i

 cv = 0

For i = 0 To x - 1

For j = 0 To y - 1

For k = 0 To z - 1

Do Until node(i, j, k).isempty

 node(i, j, k).delete

 Loop

 Next k

 Next j

 Next i

For i = 0 To x - 1

For j = 0 To y - 1

For k = 0 To z - 1

 node(i, j, k).my_id = array1(cv)

 cv = cv + 1

 Next k

 Next j

 Next i

www.manaraa.com

115

For i = 0 To x - 1

For j = 0 To y - 1

For k = 0 To z - 1

 If node(i, j, k).my_id = N Then

 leader_x_pos = i

 leader_y_pos = j

 leader_z_pos = k

End If

 Next k

 Next j

 Next i

 X1 = Val(configfrm.failureX.Text)

 If (X1 > x) Or (X1 < 0) Then X1 = x

 Y1 = Val(configfrm.failureY.Text)

 If (Y1 > y) Or (Y1 < 0) Then Y1 = y

 Z1 = Val(configfrm.failureZ.Text)

 If (Z1 > z) Or (Z1 < 0) Then Z1 = z

 Link_failure = Val(configfrm.Link.Text)

 If Link_failure > 6 Or Link_failure < 1 Then Link_failure = 6

 Select Case Link_failure

 Case 1

 node(X1, Y1, Z1).link_failure1 = True

 node((X1 + 1) Mod x, Y1, Z1).link_failure3 = True

 Case 2

 node(X1, Y1, Z1).link_failure2 = True

 node(X1, (Y1 + 1) Mod y, Z1).link_failure4 = True

www.manaraa.com

116

 Case 3

 node(X1, Y1, Z1).link_failure3 = True

 node((X1 - 1 + x) Mod x, Y1, Z1).link_failure1 = True

 Case 4

 node(X1, Y1, Z1).link_failure4 = True

 node(X1, (Y1 - 1 + y) Mod y, Z1).link_failure2 = True

 Case 5

 node(X1, Y1, Z1).link_failure5 = True

 node(X1, Y1, (Z1 + 1) Mod z).link_failure6 = True

 Case 6

 node(X1, Y1, Z1).link_failure6 = True

 node(X1, Y1, (Z1 - 1 + z) Mod z).link_failure5 = True

 End Select

 ppp = False

 For i = 0 To x - 1

 For j = 0 To y - 1

 For k = 0 To z - 1

 bb = i

 node(i, j, k).normal = True

 node(i, j, k).leader_id = N

 node(i, j, k).leader_x_pos = leader_x_pos

 node(i, j, k).leader_y_pos = leader_y_pos

 node(i, j, k).leader_z_pos = leader_z_pos

 node(i, j, k).local_phase = 0

 node(i, j, k).local_step = 0

 node(i, j, k).x_pos = i

 node(i, j, k).y_pos = j

 node(i, j, k).z_pos = k

 node(i, j, k).candidate_id = 0

 node(i, j, k).candidate_x_pos = 0

 node(i, j, k).candidate_y_pos = 0

www.manaraa.com

117

 node(i, j, k).candidate_z_pos = 0

 node(i, j, k).wait = False

 node(i, j, k).wait_time = 0

 node(i, j, k).wait_message = ""

 node(i, j, k).stored_phase3_message = ""

 node(i, j, k).stored_phase4_message = ""

 Next k

 Next j

 Next i

 number_of_message = 0

End Sub

Private Sub start_Click(Index As Integer)

 Timer1.Enabled = Not Timer1.Enabled

End Sub

Private Sub stop_Click()

 Timer1.Enabled = Not Timer1.Enabled

End Sub

Private Sub Timer1_Timer()

 Dim i%, j%, k%, message$, mssg$, sourse_Y_pos$, sourse_X_pos$, dist%,

phase3step%, phase4step%, msg As String, mm As String

 message = ""

 mssg = ""

 time_step = time_step + 1

 ltimesteps.Caption = time_step

 For i = 0 To x – 1

www.manaraa.com

118

 For j = 0 To y - 1

 For k = 0 To z - 1

 If Not node(i, j, k).isempty Then

 Do Until node(i, j, k).isempty Or node(i, j, k).read_btime = time_step

 message = node(i, j, k).read_buffer

 If Left(message, 3) = "ack" Then

 node(i, j, k).wait = False

 node(i, j, k).wait_time = 0

 node(i, j, k).wait_message = ""

 GoTo 20

 End If

 If Mid(message, 2, 1) > Val(Label4.Caption) Then Label4.Caption =

Mid(message, 2, 1)

 If Val(Mid(message, 1, 1)) < 5 Then

 node(i, j, k).normal = False

 End If

 If Val(Mid(message, 1, 1)) = 5 Then

 node(i, j, k).normal = True

 End If

 ' ==

 'error number 1 in phase 2 the detour is 3,5,1

 If Mid(message, 1, 1) = "a" Then

 mssg = "b" & Mid(message, 2, 22)

 Call send(mssg, time_step, 5, i, j, k)

 End If

 If Mid(message, 1, 1) = "b" Then

 mssg = "c" & Mid(message, 2, 22)

 Call send(mssg, time_step, 1, i, j, k)

 End If

 If Mid(message, 1, 1) = "c" Then

 mssg = "1" & Mid(message, 2, 22)

www.manaraa.com

119

 Call phase2(mssg, i, j, k, 0)

 End If

 'error number 2 in phase 3 the detour is 5,1,6

 If Mid(message, 1, 1) = "d" Then

 mssg = "e" & Mid(message, 2, 22)

 Call send(mssg, time_step, 1, i, j, k)

 End If

 If Mid(message, 1, 1) = "e" Then

 mssg = "f" & Mid(message, 2, 22)

 Call send(mssg, time_step, 6, i, j, k)

 End If

 If Mid(message, 1, 1) = "f" Then

 mssg = "3" & Mid(message, 2, 22)

 Call phase3(mssg, i, j, k, 0)

 End If

 'error number 3 in phase 4 the detour is 1,2,3

 If Mid(message, 1, 1) = "g" Then

 mssg = "h" & Mid(message, 2, 22)

 Call send(mssg, time_step, 2, i, j, k)

 End If

 If Mid(message, 1, 1) = "h" Then

 mssg = "i" & Mid(message, 2, 22)

 Call send(mssg, time_step, 3, i, j, k)

 End If

 If Mid(message, 1, 1) = "i" Then

 mssg = "4" & Mid(message, 2, 22)

 Call phase4(mssg, i, j, k, 0)

 End If

www.manaraa.com

121

 If Val(Mid(message, 1, 1)) = 0 Then

 Call phase1(message, i, j, k)

 End If

 ' ---

 If Val(Mid(message, 1, 1)) = 1 Then

 Call phase2(message, i, j, k, 1)

 End If

 '---

 If Mid(message, 1, 1) = "2" Then

 node(i, j, k).candidate_id = Mid(message, 5, 6)

 node(i, j, k).candidate_x_pos = Mid(message, 11, 2)

 node(i, j, k).candidate_y_pos = Mid(message, 13, 2)

 node(i, j, k).candidate_z_pos = Mid(message, 15, 2)

 node(i, j, k).local_phase = 3

 If node(i, j, k).x_pos = 0 Then

 message = "3" & Mid(message, 2, 22)

 Mid(message, 3, 2) = "01"

 Call send(message, time_step, 1, i, j, k)

 node(i, j, k).wait = True

 node(i, j, k).wait_time = time_step

 node(i, j, k).wait_message = "d" & Mid(message, 2, 22)

 End If

 If Len(node(i, j, k).stored_phase3_message) >= 7 Then

 If Val(Mid(node(i, j, k).stored_phase3_message, 5, 6)) >

Val(Mid(message, 5, 6)) Then

 message = node(i, j, k).stored_phase3_message

 End If

www.manaraa.com

121

 message = "3" & Mid(message, 2, 22)

 Mid(message, 3, 2) = Val(Mid(node(i, j,

k).stored_phase3_message, 3, 2)) + 1

 Call send(message, time_step, 1, i, j, k)

 End If

 GoTo 20

 End If

'--

 If Val(Mid(message, 1, 1)) = 3 Then

 Call phase3(message, i, j, k, 1)

 End If

 '---

 If Mid(message, 1, 1) = "4" Then

 Call phase4(message, i, j, k, 1)

 End If

'---

 If Mid(message, 1, 1) = "5" Then

 Call phase5(message, time_step, i, j, k)

 End If

'---

20:

 message = ""

 mssg = ""

 Loop

 End If

www.manaraa.com

122

 If node(i, j, k).wait And time_step - node(i, j, k).wait_time = 2 Then

 mssg = node(i, j, k).wait_message

 If node(i, j, k).local_phase = 2 Then Call send(mssg, time_step, 3, i, j, k)

 If node(i, j, k).local_phase = 3 Then Call send(mssg, time_step, 5, i, j, k)

 If node(i, j, k).local_phase = 4 Then Call send(mssg, time_step, 1, i, j, k)

 node(i, j, k).wait = False

 node(i, j, k).wait_time = 0

 node(i, j, k).wait_message = ""

 End If

 'Dim ttt%

 'And time_step < (((9 / 2) * x) + 9 + rand)

 If Not node(i, j, k).normal Then ppp = True

 Next k

 Next j

 Next i

40:

If step = True Then Timer1.Enabled = False

If Not ppp Then Timer1.Enabled = False ': MsgBox (" finished")

ppp = False

End Sub

Private Sub leader_failure(f As Integer)

 Randomize

 Static flag2 As Boolean

 If flag2 Then configration

 flag2 = True

 Dim i%, k%, a%, b%, c%, r%, message$, dist%, msg As String

 time_step = 1

 node(leader_x_pos, leader_y_pos, leader_z_pos).my_id = 0

 filename = path & "\tt"

www.manaraa.com

123

 For i = 1 To f

70: a = (Int(N * Rnd())) Mod x

 b = (Int(N * Rnd())) Mod y

 k = (Int(N * Rnd())) Mod z

 If node(a, b, k).my_id = node(a, b, c).leader_id Then GoTo 70

 If node(a, b, k).normal = True Then

 node(a, b, k).normal = False

 node(a, b, k).local_phase = 1

 node(a, b, k).local_step = 1

 node(a, b, k).leader_id = -1

 node(a, b, k).leader_x_pos = -1

 node(a, b, k).leader_y_pos = -1

 node(a, b, k).leader_z_pos = -1

 node(a, b, k).candidate_id = node(a, b, k).my_id

 node(a, b, k).candidate_x_pos = node(a, b, k).x_pos

 node(a, b, k).candidate_y_pos = node(a, b, k).y_pos

 node(a, b, k).candidate_z_pos = node(a, b, k).z_pos

 message = Format(0, "0") & Format(node(a, b, k).local_phase, "0") &

Format(node(a, b, k).local_step, "00") & Format(0, "000000") & Format(0, "00")

& Format(0, "00") & Format(0, "00") & Format(node(a, b, k).x_pos, "00") &

Format(node(a, b, k).y_pos, "00") & Format(node(a, b, k).z_pos, "00")

 Call send(message, time_step, 1, a, b, k)

 Call send(message, time_step, 3, a, b, k)

 Call send(message, time_step, 2, a, b, k)

 Call send(message, time_step, 4, a, b, k)

 node(a, b, k).local_phase = 2

 node(a, b, k).local_step = 1

 message_type = 1

 sourse_X_pos = node(a, b, k).x_pos

www.manaraa.com

124

 sourse_Y_pos = node(a, b, k).y_pos

 sourse_Z_pos = node(a, b, k).z_pos

 message = Format(message_type, "0") & Format(node(a, b,

k).local_phase, "0") & Format(node(a, b, k).local_step, "00") & Format(node(a,

b, k).candidate_id, "000000") & Format(node(a, b, k).x_pos, "00") &

Format(node(a, b, k).y_pos, "00") & Format(node(a, b, k).z_pos, "00") &

Format(sourse_X_pos, "00") & Format(sourse_Y_pos, "00") &

Format(sourse_Z_pos, "00")

 Call send(message, time_step, 5, a, b, k)

 node(a, b, k).wait = True

 node(a, b, k).wait_time = time_step

 node(a, b, k).wait_message = "a" & Mid(message, 2, 22)

 Else

 i = i - 1

 End If

 Next i

 ltimesteps.Caption = time_step

End Sub

Private Sub phase1(message$, i%, j%, k%)

Dim mssg As String

 If node((i + 1) Mod x, j, k).normal = True Then

 Call send(message, time_step, 1, i, j, k)

 node((i + 1) Mod x, j, k).normal = False

 End If

 If node((i - 1 + x) Mod x, j, k).normal = True Then

 Call send(message, time_step, 3, i, j, k)

 node((i - 1 + x) Mod x, j, k).normal = False

 End If

 If node(i, (j + 1) Mod y, k).normal = True Then

 Call send(message, time_step, 2, i, j, k)

 node(i, (j + 1) Mod y, k).normal = False

www.manaraa.com

125

 End If

 If node(i, (j - 1 + y) Mod y, k).normal = True Then

 Call send(message, time_step, 4, i, j, k)

 node(i, (j - 1 + y) Mod y, k).normal = False

 End If

 node(i, j, k).local_phase = 2

 node(i, j, k).local_step = 1

 node(i, j, k).leader_id = -1

 node(i, j, k).leader_x_pos = -1

 node(i, j, k).leader_y_pos = -1

 node(i, j, k).candidate_id = node(i, j, k).my_id

 node(i, j, k).candidate_x_pos = node(i, j, k).x_pos

 node(i, j, k).candidate_y_pos = node(i, j, k).y_pos

 node(i, j, k).candidate_z_pos = node(i, j, k).z_pos

 message_type = 1 ' election message

 sourse_X_pos = node(i, j, k).x_pos

 sourse_Y_pos = node(i, j, k).y_pos

 sourse_Z_pos = node(i, j, k).z_pos

 mssg = Format(message_type, "0") & Format(node(i, j, k).local_phase,

"0") & Format(node(i, j, k).local_step, "00") & Format(node(i, j, k).candidate_id,

"000000") _

 & Format(node(i, j, k).candidate_x_pos, "00") & Format(node(i, j,

k).candidate_y_pos, "00") & Format(node(i, j, k).candidate_z_pos, "00") &

Format(sourse_X_pos, "00") & Format(sourse_Y_pos, "00") &

Format(sourse_Z_pos, "00")

 Call send(mssg, time_step, 5, i, j, k)

 node(i, j, k).wait = True

 node(i, j, k).wait_time = time_step

 node(i, j, k).wait_message = "a" & Mid(mssg, 2, 22)

End Sub

www.manaraa.com

126

Private Sub phase2(message$, i%, j%, k%, a%)

Dim mssg$

 If node(i, j, k).local_phase = 2 And Val(node(i, j, k).z_pos) >

Val(Mid(message, 21, 2)) Then

 If a = 1 Then Call send("ack", time_step, 6, i, j, k): GoTo 30

 End If

 node(i, j, k).local_phase = 2

 If node(i, j, k).my_id > Val(Mid(message, 5, 6)) Then

 Mid(message, 5, 6) = Format(node(i, j, k).my_id, "000000")

 Mid(message, 11, 2) = Format(node(i, j, k).x_pos, "00")

 Mid(message, 13, 2) = Format(node(i, j, k).y_pos, "00")

 Mid(message, 15, 2) = Format(node(i, j, k).z_pos, "00")

 End If

 node(i, j, k).leader_id = -1

 node(i, j, k).leader_x_pos = -1

 node(i, j, k).leader_y_pos = -1

 node(i, j, k).leader_z_pos = -1

 If a = 1 Then Call send("ack", time_step, 6, i, j, k)

 Mid(message, 3, 2) = Format(Val(Mid(message, 3, 2) + 1), "00")

 If node(i, j, k).z_pos <> Val(Mid(message, 21, 2)) Then

 Call send(message, time_step, 5, i, j, k)

 node(i, j, k).wait = True

 node(i, j, k).wait_time = time_step

 node(i, j, k).wait_message = "a" & Mid(message, 2, 22)

 Else

 Mid(message, 3, 2) = Format(0, "00")

 mssg = "2" & Mid(message, 2, 22)

 Call send(mssg, time_step, 7, i, j, k)

 If k <> 0 Then

 node(i, j, k).candidate_id = 0

www.manaraa.com

127

 node(i, j, k).candidate_x_pos = 0

 node(i, j, k).candidate_y_pos = 0

 node(i, j, k).candidate_z_pos = 0

 End If

 node(i, j, k).wait = False

 node(i, j, k).wait_time = 0

 node(i, j, k).wait_message = ""

 End If

30:

End Sub

Private Sub phase3(message$, i%, j%, k, a%)

 If a = 1 Then Call send("ack", time_step, 3, i, j, k)

 If node(i, j, k).local_phase = 3 Then

 If node(i, j, k).candidate_id >= Val(Mid(message, 5, 6)) Then

 Mid(message, 5, 6) = Format(node(i, j, k).candidate_id,

"000000")

 Mid(message, 11, 2) = Format(node(i, j,

k).candidate_x_pos, "00")

 Mid(message, 13, 2) = Format(node(i, j,

k).candidate_y_pos, "00")

 Mid(message, 15, 2) = Format(node(i, j,

k).candidate_z_pos, "00")

 Else

 node(i, j, k).candidate_id = Mid(message, 5, 6)

 node(i, j, k).candidate_x_pos = Mid(message, 11, 2)

 node(i, j, k).candidate_y_pos = Mid(message, 13, 2)

 node(i, j, k).candidate_z_pos = Mid(message, 15, 2)

 End If

 Else

 node(i, j, k).stored_phase3_message = message

 End If

www.manaraa.com

128

 If node(i, j, k).x_pos <> 0 Then

 If node(i, j, k).local_phase = 3 Then

 If node(i, j, k).candidate_id >= Val(Mid(message, 5, 6)) Then

 Mid(message, 5, 6) = Format(node(i, j, k).candidate_id,

"000000")

 Mid(message, 11, 2) = Format(node(i, j,

k).candidate_x_pos, "00")

 Mid(message, 13, 2) = Format(node(i, j,

k).candidate_y_pos, "00")

 Mid(message, 15, 2) = Format(node(i, j,

k).candidate_z_pos, "00")

 Else

 node(i, j, k).candidate_id = Mid(message, 5, 6)

 node(i, j, k).candidate_x_pos = Mid(message, 11, 2)

 node(i, j, k).candidate_y_pos = Mid(message, 13, 2)

 node(i, j, k).candidate_z_pos = Mid(message, 15, 2)

 End If

 Call send(message, time_step, 1, i, j, k)

 node(i, j, k).wait = True

 node(i, j, k).wait_time = time_step

 node(i, j, k).wait_message = "d" & Mid(message, 2, 22)

 Else

 node(i, j, k).stored_phase3_message = message

 End If

 End If

 If node(i, j, k).x_pos = 0 And node(i, j, k).y_pos = 0 And node(i, j,

k).z_pos = 0 And node(i, j, k).local_phase = 3 Then

 node(i, j, k).local_phase = 4

 Mid(message, 1, 1) = Format(4, "0")

 Mid(message, 2, 1) = Format(4, "0")

 Mid(message, 3, 2) = Format(0, "00")

 Call send(message, time_step, 2, i, j, k)

 node(i, j, k).wait = True

www.manaraa.com

129

 node(i, j, k).wait_time = time_step

 node(i, j, k).wait_message = "g" & Mid(message, 2, 22)

 End If

 If node(i, j, k).x_pos = 0 And node(i, j, k).y_pos <> 0 And node(i, j,

k).z_pos = 0 Then

 node(i, j, k).local_phase = 4

 If Len(node(i, j, k).stored_phase4_message) >= 7 Then

 If Val(Mid(node(i, j, k).stored_phase4_message, 5, 6)) >

Val(Mid(message, 5, 6)) Then

 message = node(i, j, k).stored_phase3_message

 End If

 message = "4" & Mid(message, 2, 22)

 Mid(message, 3, 2) = Val(Mid(node(i, j,

k).stored_phase3_message, 3, 2)) + 1

 Call send(message, time_step, 2, i, j, k)

 End If

 End If

End Sub

Private Sub phase4(message$, i%, j%, k, a%)

 If a = 1 Then Call send("ack", time_step, 4, i, j, k)

 If node(i, j, k).y_pos <> 0 And node(i, j, k).x_pos = 0 And node(i, j,

k).z_pos = 0 Then

 If node(i, j, k).local_phase = 4 Then

www.manaraa.com

131

 If node(i, j, k).candidate_id > Val(Mid(message, 5, 6)) Then

 Mid(message, 5, 6) = Format(node(i, j, k).candidate_id, "000000")

 Mid(message, 11, 2) = Format(node(i, j, k).candidate_x_pos, "00")

 Mid(message, 13, 2) = Format(node(i, j, k).candidate_y_pos, "00")

 Mid(message, 15, 2) = Format(node(i, j, k).candidate_z_pos, "00")

 Mid(message, 3, 2) = Format(Mid(message, 3, 2) + 1, "00")

 End If

 Call send(message, time_step, 2, i, j, k)

 node(i, j, k).wait = True

 node(i, j, k).wait_time = time_step

 node(i, j, k).wait_message = "g" & Mid(message, 2, 22)

 Else

 node(i, j, k).stored_phase4_message = message

 End If

 End If

 If node(i, j, k).x_pos = 0 And node(i, j, k).y_pos = 0 And node(i, j, k).z_pos

= 0 Then

 node(i, j, k).local_phase = 5

 node(i, j, k).leader_id = Mid(message, 5, 6)

 node(i, j, k).leader_x_pos = Mid(message, 11, 2)

 node(i, j, k).leader_y_pos = Mid(message, 13, 2)

 node(i, j, k).leader_z_pos = Mid(message, 15, 2)

 Mid(message, 1, 1) = Format(5, "0")

 Mid(message, 2, 1) = Format(5, "0")

 Mid(message, 3, 2) = Format(0, "00")

 ' MsgBox (message)

 Call send(message, time_step, 1, i, j, k)

 Call send(message, time_step, 3, i, j, k)

 node(i, j, k).normal = True

 node(i, j, k).leader_id = Val(Mid(message, 5, 6))

 node(i, j, k).leader_x_pos = Val(Mid(message, 11, 2))

 node(i, j, k).leader_y_pos = Val(Mid(message, 13,

2))

www.manaraa.com

131

 node(i, j, k).leader_z_pos = Val(Mid(message, 15, 2))

 node(i, j, k).local_phase = 0

 node(i, j, k).local_step = 0

 node(i, j, k).candidate_id = 0

 node(i, j, k).candidate_x_pos = 0

 node(i, j, k).candidate_y_pos = 0

 node(i, j, k).candidate_z_pos = 0

 node(i, j, k).wait = False

 node(i, j, k).wait_time = 0

 node(i, j, k).wait_message = ""

 node(i, j, k).stored_phase3_message = ""

 node(i, j, k).stored_phase4_message = ""

 End If

End Sub

Private Sub phase5(message$, time_step, i%, j%, k%)

Dim mssg As String

 node(i, j, k).normal = True

 ' MsgBox ("inside phase 5 " & message)

 node(i, j, k).leader_id = Mid(message, 5, 6)

 node(i, j, k).leader_x_pos = Mid(message, 11, 2)

 node(i, j, k).leader_y_pos = Mid(message, 13, 2)

 node(i, j, k).leader_z_pos = Mid(message, 15, 2)

 If node((i + 1) Mod x, j, k).normal = False Then

 Call send(message, time_step, 1, i, j, k)

 node((i + 1) Mod x, j, k).normal = True

 End If

 If node((i - 1 + x) Mod x, j, k).normal = False Then

 Call send(message, time_step, 3, i, j, k)

www.manaraa.com

132

 node((i - 1 + x) Mod x, j, k).normal = True

 End If

 If node(i, (j + 1) Mod y, k).normal = False Then

 Call send(message, time_step, 2, i, j, k)

 node(i, (j + 1) Mod y, k).normal = True

 End If

 If node(i, (j - 1 + y) Mod y, k).normal = False Then

 Call send(message, time_step, 4, i, j, k)

 node(i, (j - 1 + y) Mod y, k).normal = True

 End If

 If node(i, j, (k + 1) Mod z).normal = False Then

 Call send(message, time_step, 5, i, j, k)

 End If

 If node(i, j, (k - 1 + z) Mod z).normal = False Then

 Call send(message, time_step, 6, i, j, k)

 node(i, j, (k - 1 + z) Mod z).normal = True

 End If

 node(i, j, k).local_phase = 0

 node(i, j, k).local_step = 0

 node(i, j, k).candidate_id = 0

 node(i, j, k).candidate_x_pos = 0

 node(i, j, k).candidate_y_pos = 0

 node(i, j, k).candidate_z_pos = 0

 node(i, j, k).wait = False

 node(i, j, k).wait_time = 0

 node(i, j, k).wait_message = ""

 node(i, j, k).stored_phase3_message = ""

 node(i, j, k).stored_phase4_message = ""

End Sub

www.manaraa.com

133

